• Title/Summary/Keyword: Link mechanism

Search Result 610, Processing Time 0.025 seconds

Optimal Mechanism Design of In-pipe Cleaning Robot (관로 청소 로봇의 최적 설계)

  • Jung, C.D.;Chung, W.J.;Ahn, J.S.;Shin, G.S.;Kwon, S.J.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.123-129
    • /
    • 2012
  • Recently, interests on cleaning robots workable in pipes (termed as in-pipe cleaning robot) are increasing because Garbage Automatic Collection Facilities (i.e, GACF) are widely being installed in Seoul metropolitan area of Korea. So far research on in-pipe robot has been focused on inspection rather than cleaning. In GACF, when garbage is moving, the impurities which are stuck to the inner face of the pipe are removed (diameter: 300 mm or 400 mm). Thus, in this paper, by using TRIZ (Inventive Theory of Problem Solving in Russian abbreviation), an in-pipe cleaning robot of GACF with the 6-link sliding mechanism will be proposed, which can be adjusted to fit into the inner face of pipe using pneumatic pressure(not spring). The proposed in-pipe cleaning robot for GACF can have forward/backward movement itself as well as rotation of brush in cleaning. The robot body should have the limited size suitable for the smaller pipe with diameter of 300 mm. In addition, for the pipe with diameter of 400 mm, the links of robot should stretch to fit into the diameter of the pipe by using the sliding mechanism. Based on the conceptual design using TRIZ, we will set up the initial design of the robot in collaboration with a field engineer of Robot Valley, Inc. in Korea. For the optimal design of in-pipe cleaning robot, the maximum impulsive force of collision between the robot and the inner face of pipe is simulated by using RecurDyn(R) when the link of sliding mechanism is stretched to fit into the 400 mm diameter of the pipe. The stresses exerted on the 6 links of sliding mechanism by the maximum impulsive force will be simulated by using ANSYS$^{(R)}$ Workbench based on the Design Of Experiment(in short DOE). Finally the optimal dimensions including thicknesses of 4 links will be decided in order to have the best safety factor as 2 in this paper as well as having the minimum mass of 4 links. It will be verified that the optimal design of 4 links has the best safety factor close to 2 as well as having the minimum mass of 4 links, compared with the initial design performed by the expert of Robot Valley, Inc. In addition, the prototype of in-pipe cleaning robot will be stated with further research.

A Study of Cell delay for ABR service in ATM network (ATM 네트워크에서 ABR 서비스의 셀 지연 방식에 관한 연구)

  • 이상훈;조미령;김봉수
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.9
    • /
    • pp.1163-1174
    • /
    • 2001
  • A general goal of the ATM(Asynchronous Transfer Mode) network is to support connections across various networks. ABR service using EPRCA(Enhanced Proportional Rate Control Algorithm) switch controls traffics in ATM network. EPRCA switch, traffic control method uses variation of the ACR(Allowed Cell Rate) to enhance the utilization of the link bandwidth. However, in ABR(Available Bit Rate) service, different treatments are offered according to different RTTs(Round Trip Times) of connections. To improve the above unfairness, this paper presents ABR DELAY mechanism, in which three reference parameters for cell delay are defined, and reflect on the messages of RM(Resource Management) cells. To evaluate our mechanism, we compare the fairness among TCP connections between ABR DELAY mechanism and ABR RRM mechanism. And also we execute simulations on a simple ATM network model where six TCP connections and a background traffic with different RTTs share the bandwidth of a bottleneck link. The simulation results, based on TCP goodput and efficiency, clearly show that ABR DELAY mechanism improves the fairness among TCP connections.

  • PDF

Topology Design of Rigid-String Mechanism Using Constraint Force Design Method (구속조건 힘 설계기법을 이용한 강체와 스트링의 위상 최적설계)

  • Heo, Jae-Chung;Yoon, Gil-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.745-750
    • /
    • 2012
  • This study extends the constraint force design method allowing topology optimization for planar rigid-link and string mechanisms. To our best knowledge, by applying conventional machine and mechanism design theories, it is likely that it is possible to find out optimal locations of joints and lengths of rigid-links but somewhat difficult to find out optimal topology of rigid-links. To achieve optimal topology of rigid links, there is our previous contribution so called the new constraint force design method with the binary design variables determining the existence of the auxiliary forces imposing apparent lengths among unit masses. By adding new binary design variables, this research extends the constraint force design method to find out optimal mechanism consisting of stringy links as well as rigid links that seems impossible in the conventional machine and mechanism design theories.

Optimization of a Piezoelectric Actuator using Bridge-Type Hinge Mechanism (브릿지형 힌지 메커니즘을 이용한 압전구동기의 최적화)

  • 김준형;김수현;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.168-175
    • /
    • 2003
  • In this research, a bridge-type flexure hinge mechanism is developed and optimized to amplify the displacement of a multilayer piezostack. Developed hinge mechanism has three-dimensional structure to reduce link size, so it have high amplification ratio with respect to small size. A flexure hinge is assumed to be 6 degree-of-freedom spring elements and matrix methods are used to model a hinge mechanism. To verify derived matrix model, a displacement and frequency experiments are performed. The analysis result shows that the displacemental error between matrix model and experiments is below 10 percents and the deformation of hinge in parasitic direction should be considered In hinge modeling. Using developed matrix model, an optimal design is performed to maximize the performance of hinge mechanism.

Design of a Novel Polishing Tool Mechanism with 3-axis Compliance

  • Gi-Seong Kim;Han Sung Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_1
    • /
    • pp.993-999
    • /
    • 2023
  • In this paper, a novel polishing tool mechanism with 3-axis compliance is presented, which consists of 2-axis rotational and 1-axis linear compliances in series. The 2-axis rotational compliance mechanism is made up of four cantilever beams for adjusting rotational stiffness and one flexure universal joint at the center for constraining the z-axis deflection. The 2-axis rotational compliance can mechanically adjust the polishing tool to machined surfaces. The polishing press force can be simply controlled by using a linear spring along the z-axis. The 2-axis rotational and 1-axis linear compliance design is decoupled. The stiffness analysis of the 2-axis compliance mechanism was performed based on link compliance matrix and rigid body transformation. A 3-axis polishing tool was designed by configuring the 2-axis compliance mechanism and one linear spring.

An Efficient Algorithm for Mining Frequent Closed Itemsets Using Transaction Link Structure (트랜잭션 연결 구조를 이용한 빈발 Closed 항목집합 마이닝 알고리즘)

  • Han, Kyong Rok;Kim, Jae Yearn
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.3
    • /
    • pp.242-252
    • /
    • 2006
  • Data mining is the exploration and analysis of huge amounts of data to discover meaningful patterns. One of the most important data mining problems is association rule mining. Recent studies of mining association rules have proposed a closure mechanism. It is no longer necessary to mine the set of all of the frequent itemsets and their association rules. Rather, it is sufficient to mine the frequent closed itemsets and their corresponding rules. In the past, a number of algorithms for mining frequent closed itemsets have been based on items. In this paper, we use the transaction itself for mining frequent closed itemsets. An efficient algorithm is proposed that is based on a link structure between transactions. Our experimental results show that our algorithm is faster than previously proposed methods. Furthermore, our approach is significantly more efficient for dense databases.

A Study on The Optimal Data Link Window Flow Control for ISDN (ISDN을 위한 최적 데이타 링크 흐름 제어에 관한 연구)

  • Kim, Dong-Yon;Shin, Woo-Cheol;Park, Mig-Non;Lee, Sang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1174-1177
    • /
    • 1987
  • The design of flow control protocols for integrared networks with complete voice traffic on the data link level is investigated. The class of admissible flow control policies analyzed maximized the average data link throughput subject to an average system time delay constraints a finite intervals (O,s). In particular, it is shown that the optimum control law is bang-bang (window flow mechanism). The window size L can be analytically derived from maximum tolerated time delay T, the input arrival C of the queueing system, the duration of the time interval S, the initial number of packets in the queue.

  • PDF

Effect of Link Stiffness on Error of Cubic Parallel Manipulator in 3D Workspace (3차원 작업영역에서 링크 강성이 육면형 병렬 기구 오차에 미치는 영향)

  • 박성철;임승룡;김현수;최우천;송재복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.397-401
    • /
    • 1997
  • An error analysis is very important for a precision machine to estimate its performances. This study deals with error of a new parallel device, cubic parallel manipulator. There are so many error sources in this mechanism. Errors of the cubic parallel device vary depending on the stiffness of the manipulator. The stiffness of each link depends on the directions of the link and actuation force. In this paper, the stiffness of the manipulator is calculated by ARAQUS and the position and orlentation errors are predicted within a given workspace. The analysis shows that the method can be used in predicting the accuracy of other parallel devices and in designing parallel devices.

  • PDF

Simplified Predicate Locking Scheme for Concurrency Control on R-tree

  • Ying Xia;Rim, Kee-Wook;Lee, Jae-Dong;Bae, Hae-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.16-18
    • /
    • 2001
  • Despite extensive research on R-trees, most of the proposed schemes have not been integrated into existing DBMS due to the lack of protocol to provide consistency in concurrent environment. R-link tree is an acceptable data structure to deal with this issue., but still not enough. In this paper, we focus on a simplified predicate locking mechanism based on R-link tree for concurrency control and phantom protection. An in-memory operation control list (OCList) used to suspend some conflicting operations is designed here. The main features of this approach are (1) it can be implemented easily and do not need any extra information. (2) Only-one-lock is held when descending R-tree even when node split happens, while lock-coupling scheme is performed when ascending. No deadlocks are possible. (3) Searches and insertions are not unnecessarily restricted. (4) Insert and Delete phantom in R-link tree are avoid through beforehand predication.

  • PDF

A Sliding Mode Control for a Robot Manipulator with closed-chain Structure (폐체인 구조 로봇 머니퓰레이터의 슬라이딩모드 제어)

  • Choi Hyeung Sik;Baek Chagng Yul;Hwang I Chul;Kim Moo Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.98-108
    • /
    • 2005
  • Conventional robot manipulators actuated by motors with the speed reducer such as the harmonic drive have weakness in the load capacity, since the speed reducer does not have enough strength. To improve this, a new type of robot actuator based on the four-bar-link mechanism driven by the ball screw was constructed. Also, a new type of revolute robot manipulator composed of the developed actuators was developed. But, modelling errors occur due to the off-set from the nominal model since the exact modeling of the complex inertia variation of the four-bar-link actuator is very difficult. To control the proposed robot along the prescribed trajectory, a sliding mode control algorithm was applied with compensation function for the modeling errors. To show performance of the proposed controller, a computer simulation was performed, and its results was presented.