• Title/Summary/Keyword: Link breakage prediction

Search Result 3, Processing Time 0.015 seconds

Enhanced OLSR Routing Protocol Using Link-Break Prediction Mechanism for WSN

  • Jaggi, Sukhleen;Wasson, Er. Vikas
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.3
    • /
    • pp.259-267
    • /
    • 2016
  • In Wireless Sensor Network, various routing protocols were employed by our Research and Development community to improve the energy efficiency of a network as well as to control the traffic by considering the terms, i.e. Packet delivery rate, the average end-to-end delay, network routing load, average throughput, and total energy consumption. While maintaining network connectivity for a long-term duration, it's necessary that routing protocol must perform in an efficient way. As we discussed Optimized Link State Routing protocol between all of them, we find out that this protocol performs well in the large and dense networks, but with the decrease in network size then scalability of the network decreases. Whenever a link breakage is encountered, OLSR is not able to periodically update its routing table which may create a redundancy problem. To resolve this issue in the OLSR problem of redundancy and predict link breakage, an enhanced protocol, i.e. S-OLSR (More Scalable OLSR) protocol has been proposed. At the end, a comparison among different existing protocols, i.e. DSR, AODV, OLSR with the proposed protocol, i.e. S-OLSR is drawn by using the NS-2 simulator.

Local Repair Routing Algorithm using Link Breakage Prediction in Mobile Ad Hoc Networks (모바일 애드 혹 네트워크에서 링크 단절 예측을 사용한 지역 수정 라우팅 알고리즘)

  • Yoo, Dae-Hun;Choi, Woong-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1173-1181
    • /
    • 2007
  • A number of routing algorithms have been studied for wireless mobile ad-hoc network. Among them, the AODV routing algorithm with on-demand method periodically transmits hello message and monitors link state during data transmission in order to maintain routing paths. When a path is disconnected, a node that senses it transmits a RERR packet to the transmitting node or transmits a RREQ locally so that the path could be repaired. With that, the control packet such as a RREQ is broadcast, which causes the consumption of bandwidth and incurs data latency. This paper proposes a LRRLBP algorithm that locally repairs a path by predicting link state before disconnecting the path based on the AODV routing protocol for solving such problems. Intensive simulations with the results using NS-2 simulator are shown for verifying the proposed protocol.

Mobility Prediction Based Autonomous Data Link Connectivity Maintenance Using Unmanned Vehicles in a Tactical Mobile Ad-Hoc Network (전술 모바일 애드혹 네트워크에서 무인기를 이용하는 이동 예측 기반의 데이터 링크 연결 유지 알고리즘)

  • Le, Duc Van;Yoon, Seokhoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.1
    • /
    • pp.34-45
    • /
    • 2013
  • Due to its self-configuring nature, the tactical mobile ad hoc network is used for communications between tactical units and the command and control center (CCC) in battlefields, where communication infrastructure is not available. However, when a tactical unit moves far away from the CCC or there are geographical constraints, the data link between two communicating nodes can be broken, which results in an invalid data route from the tactical units to CCC. In order to address this problem, in this paper we propose a hierarchical connectivity maintenance scheme, namely ADLCoM (Autonomous Data Link Connectivity Maintenance). In ADLCoM, each tactical unit has one or more GW (gateway), which checks the status of data links between tactical units. If there is a possibility of link breakage, GWs request ground or aerial unmanned vehicles to become a relay for the data link. The simulation results, based on tactical scenarios, show that the proposed scheme can significantly improve the network performance with respect to data delivery ratio.