• Title/Summary/Keyword: Link Error Rate

Search Result 213, Processing Time 0.021 seconds

A Single-ended Simultaneous Bidirectional Transceiver in 65-nm CMOS Technology

  • Jeon, Min-Ki;Yoo, Changsik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.817-824
    • /
    • 2016
  • A simultaneous bidirectional transceiver over a single wire has been developed in a 65 nm CMOS technology for a command and control bus. The echo signals of the simultaneous bidirectional link are cancelled by controlling the decision level of receiver comparators without power-hungry operational amplifier (op-amp) based circuits. With the clock information embedded in the rising edges of the signals sent from the source side to the sink side, the data is recovered by an open-loop digital circuit with 20 times blind oversampling. The data rate of the simultaneous bidirectional transceiver in each direction is 75 Mbps and therefore the overall signaling bandwidth is 150 Mbps. The measured energy efficiency of the transceiver is 56.7 pJ/b and the bit-error-rate (BER) is less than $10^{-12}$ with $2^7-1$ pseudo-random binary sequence (PRBS) pattern for both signaling directions.

A Multi-hop OFDM Frame Structure for Short-Range Underwater Acoustic Communication Networks

  • Yu, HaiFeng;Kim, Woon;Chang, KyungHi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.809-811
    • /
    • 2015
  • In this paper, for the purpose of providing high data rate services, the multi-hop frame structure is designed for the underwater acoustic (UWA) short-range system which is proposed as a part of ocean surveillance and tracking network (OSTN). Under the measured underwater channel environment, the link-level system performance are also evaluated. Simulation results show not only the packet error rate (PER) comparisons, but the optimal modulation and coding scheme (MCS) levels for the orthogonal frequency division multiplexing (OFDM) based short-range UWA communications network.

Switching between Spatial Modulation and Quadrature Spatial Modulation

  • Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.61-68
    • /
    • 2019
  • Spatial modulation (SM) is the first proposed space modulation technique. By further utilizing the quadrature spatial dimension, quadrature spatial modulation (QSM) has been developed as an amendment to SM system to enhance the overall spectral efficiency. Both techniques are capable of entirely eliminating interchannel interference (ICI) at the receiver. In this paper, we propose a simple adaptive hybrid switching transmission scheme to obtain better system performance than SM and QSM systems under a fixed transmission date rate. The presented modulator selection criterion for switching between spatial modulator and quadrature spatial modulator is based on the larger received minimum distance of spatial modulator and quadrature spatial modulator to exploit the spatial channel freedom. It is shown through Monte Carlo simulations that the proposed hybrid SM and QSM switching system yields lower error performance than the conventional SM and QSM systems under the same fixed data rate and thus can provide signal to noise ratio (SNR) gain.

The Effect of Wireless Channel Models on the Performance of Sensor Networks (채널 모델링 방법에 따른 센서 네트워크 성능 변화)

  • 안종석;한상섭;김지훈
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.4
    • /
    • pp.375-383
    • /
    • 2004
  • As wireless mobile networks have been widely adopted due to their convenience for deployment, the research for improving their performance has been actively conducted. Since their throughput is restrained by the packet corruption rate not by congestion as in wired networks, however, network simulations for performance evaluation need to select the appropriate wireless channel model representing the behavior of propagation errors for the evaluated channel. The selection of the right model should depend on various factors such as the adopted frequency band, the level of signal power, the existence of obstacles against signal propagation, the sensitivity of protocols to bit errors, and etc. This paper analyzes 10-day bit traces collected from real sensor channels exhibiting the high bit error rate to determine a suitable sensor channel model. For selection, it also evaluates the performance of two error recovery algorithms such as a link layer FEC algorithm and three TCPs (Tahoe, Reno, and Vegas) over several channel models. The comparison analysis shows that CM(Chaotic Map) model predicts 3-time less BER variance and 10-time larger PER(Packet Error Rate) than traces while these differences between the other models and traces are larger than 10-time. The simulation experiments, furthermore, prove that CM model evaluates the performance of these algorithms over sensor channels with the precision at least 10-time more accurate than any other models.

A Study of Connectivity in MIMO Fading Ad-Hoc Networks

  • Yousefi'zadeh, H.;Jafarkhani, H.;Kazemitabar, J.
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.47-56
    • /
    • 2009
  • We investigate the connectivity of fading wireless ad-hoc networks with a pair of novel connectivity metrics. Our first metric looks at the problem of connectivity relying on the outage capacity of MIMO channels. Our second metric relies on a probabilistic treatment of the symbol error rates for such channels. We relate both capacity and symbol error rates to the characteristics of the underlying communication system such as antenna configuration, modulation, coding, and signal strength measured in terms of signal-to-interference-noise-ratio. For each metric of connectivity, we also provide a simplified treatment in the case of ergodic fading channels. In each case, we assume a pair of nodes are connected if their bi-directional measure of connectivity is better than a given threshold. Our analysis relies on the central limit theorem to approximate the distribution of the combined undesired signal affecting each link of an ad-hoc network as Gaussian. Supported by our simulation results, our analysis shows that (1) a measure of connectivity purely based on signal strength is not capable of accurately capturing the connectivity phenomenon, and (2) employing multiple antenna mobile nodes improves the connectivity of fading ad-hoc networks.

Reliable Data Transmission Based on Erasure-resilient Code in Wireless Sensor Networks

  • Lei, Jian-Jun;Kwon, Gu-In
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.1
    • /
    • pp.62-77
    • /
    • 2010
  • Emerging applications with high data rates will need to transport bulk data reliably in wireless sensor networks. ARQ (Automatic Repeat request) or Forward Error Correction (FEC) code schemes can be used to provide reliable transmission in a sensor network. However, the naive ARQ approach drops the whole frame, even though there is a bit error in the frame and the FEC at the bit level scheme may require a highly complex method to adjust the amount of FEC redundancy. We propose a bulk data transmission scheme based on erasure-resilient code in this paper to overcome these inefficiencies. The sender fragments bulk data into many small blocks, encodes the blocks with LT codes and packages several such blocks into a frame. The receiver only drops the corrupted blocks (compared to the entire frame) and the original data can be reconstructed if sufficient error-free blocks are received. An incidental benefit is that the frame error rate (FER) becomes irrelevant to frame size (error recovery). A frame can therefore be sufficiently large to provide high utilization of the wireless channel bandwidth without sacrificing the effectiveness of error recovery. The scheme has been implemented as a new data link layer in TinyOS, and evaluated through experiments in a testbed of Zigbex motes. Results show single hop transmission throughput can be improved by at least 20% under typical wireless channel conditions. It also reduces the transmission time of a reasonable range of size files by more than 30%, compared to a frame ARQ scheme. The total number of bytes sent by all nodes in the multi-hop communication is reduced by more than 60% compared to the frame ARQ scheme.

A Study on the Performance Improvement of Uplink in Multi-rate Mobile Communication System Using Adaptive Parallel Interference Canceller (적응 PIC를 이용한 다중전송률 이동통신시스템의 상향채널 성능 개선 연구)

  • 안정근;진용옥
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.230-236
    • /
    • 2002
  • A study on architecture of new parallel interference canceller which can be applied for reverse link of next generation mobile communication system supporting multi-rate is performed on this paper. The proposed method adopts new algorithm which can be applied for multi-rate system to reduce multiple access interference (MAI) which cause performance degradation of CDMA system and limit of channel capacity. The proposed system is evaluated by simulation results under various conditions. As a result, performance enhancement is achieved compared to existing conventional interference cancellers. Although the amount of calculation is increased, we can find that the performance is improved generally.

An improved performance of TCP traffic connection congestion control in wireless networks (무선네트워크에서 TCP 트래픽 연결 혼잡제어에 관한 성능 개선)

  • Ra Sang-dong;Na Ha-sun;Park Dong-suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.264-270
    • /
    • 2006
  • In this paper we verified that the window based TCP performance of throughput can be improved by the traffic connection efficiency. and have studied the performance of traffic congestion control that is controlling transmission rate. In wireless network, the bidirectional node is run by estimating the usage rate of link of error control idle and the throughput is shown by transmitting segments. The throughput rate shows almost no delay due to the bidirectional traffic connection efficiency up to the allowable point as increasing the transport rate by the critical value, depending on the size of end-to-end node queue of the increase of transport rate. This paper reports the performance improvement as the number of feedback connection traffic congestion control increases because of the increase of the number of asynchronous transport TCP connections.

An ABR Rate Control Scheme Considering Wireless Channel Characteristics in the Wireless ATM Network (무선 ATM망에서 무선채널의 특성을 고려한 ABR 전송률 제어 방안)

  • Yi, Kyung-Joo;Min, Koo;Choi, Myung-Whan
    • Journal of KIISE:Information Networking
    • /
    • v.27 no.2
    • /
    • pp.206-218
    • /
    • 2000
  • Retransmissions on the DLC layer are essential to ABR service providing the low CLR (cell loss ratio) over the unreliable wireless channel with high bit error rate. In the wireless ATM, the DLC layer below ATM layer performs the retransmission and reordering of the cells to recover the cell loss over the wireless channel and by doing so, the effect of the wireless channel characteristics with high bit error rate can be minimized on the ATM layer which is designed under the assumption of the low bit error rate. We propose, in this paper, the schemes to reflect the changes of the transmission rate over the wireless channel on the ABR rate control. Proposed scheme can control the source rate to the changes of the transmission rate over the wireless channel and reduce the required buffer size in the AP (access point). In the simulation, we assume that the DLC layer can inform the ATM layer of the wireless channel quality as good or bad. Our simulation results show that the proposed schemes require the smaller buffer size compared with the existing scheme, enhanced dynamic max rate control algorithm (EDMRCA). It is also shown that the scheme with the intelligent DLC which adjusts the rate to the wireless channel quality not only provides the low CLR with smaller buffer requirement but also improves the throughput by utilizing the wireless bandwidth more efficiently.

  • PDF

Modulation Scheme for Network-coded Bi-directional Relaying over an Asymmetric Channel (양방향 비대칭 채널에서 네트워크 부호화를 위한 변조 방식)

  • Ryu, Hyun-Seok;Kang, Chung-G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2B
    • /
    • pp.97-109
    • /
    • 2012
  • In this paper, we propose a modulation scheme for a network-coded bi-directional relaying (NBR) system over an asymmetric channel, which means that the qualities of the relay channel (the link between the BS and RS) and access channel (the link between the RS and MS) are not identical. The proposed scheme employs a dual constellation in such a way that the RS broadcasts the network-coded symbols modulated by two different constellations to the MS and BS over two consecutive transmission intervals. We derive an upper bound on the average bit error rate (BER) of the proposed scheme, and compare it with the hybrid constellation-based modulation scheme proposed for the asymmetric bi-directional link. Furthermore, we investigate the channel utilization of the existing bi-directional relaying schemes as well as the NBR system with the proposed dual constellation diversity-based modulation (DCD). From our simulation results, we show that the DCD gives better average BER performance about 3.5~4dB when $E_b/N_0$ is equal to $10^{-2}$, while maintaining the same spectral efficiency as the existing NBR schemes over the asymmetric bi-directional relaying channel.