• Title/Summary/Keyword: Link Error

Search Result 643, Processing Time 0.026 seconds

Modeling of Effective Path-Length in Satellite Link Based on Rain Cell Statistics (위성 링크에 대한 강우셀 기반 실효 경로 길이 모델링 연구)

  • Kang, Woo-Geun;Kim, Myunghoi;Kim, In-Kyum;Choi, Kyung-Soo;Lee, Byoung-Sun;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.348-356
    • /
    • 2014
  • The existing effective path-length model of ITU-R has some drawbacks: The prediction error is quite large compared to domestic measurement data and it is an empirical model in which the physical characteristics of rain cells are not considered. In this paper, a theoretical model for effective path-length using the rain-cell concept was proposed and its validity was verified using the measurement data. To analyze the statistical characteristics of rain cell parameters, the weather-radar data(CAPPI) measured by Korea Meterological Administration were analyzed and the correction factor was properly introduced to fit the Chollian beacon measurement data of ETRI(Electronics and Telecommunications Research Institute). To verify the proposed effective path-length model, it was compared with the Mugunghwa No. 5 beacon data measured in Chungnam National University with the support of ADD(Agency for Defense Development). It was confirmed that the prediction results of the proposed model are in good agreement with the measurement data.

The study on the capacity of synchronous CDMA return link for a Ka band satellite communication system (Ka 대역을 사용하는 동기화 CDMA 위성 시스템 리턴링크의 수용용량에 관한 연구)

  • 황승훈;이용한;박용서;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.7
    • /
    • pp.1797-1806
    • /
    • 1998
  • Future satellite communication systems will be developed at Ka-band (20/30 GHz) owing to the relatively wide frequency allocation and current freedom from terrestrial interference for multimedia services. A serious disadvantage of the Ka-band, however, is the very high atmospheric attenuation in rainy weather. Synchronous CDMA drastically redces the effect of self-noise with several interesting features of CDMA for mobile communications such as fixible freuqncy rese, the capability of performin soft-handover and a lower sensitivity to interference. This paper evaluates the performance of a synchronous CDMA reture link for a Ka-band geostationary satellite communication system. For a fixed satellite channel whose characteristics depend on weather conditions, the signal envelope and phase for this channel is modelled as Gaussian. The bit error and outage probability, and the detection loss due to imperfect chip timing synchronization is analytically evaluated and the system capacity degaradation due to the weather condition is estimated. The two cases consist of the general case in which all users are affected by rain condition, and the worst case in which the reference user is only affected by rain attenuation. the results for two cases of rain condition clearly show that synchronous CDMA eases the power control requirements and has less sensitivity to imperfect power control.

  • PDF

Probe Vehicle Data Collecting Intervals for Completeness of Link-based Space Mean Speed Estimation (링크 공간평균속도 신뢰성 확보를 위한 프로브 차량 데이터 적정 수집주기 산정 연구)

  • Oh, Chang-hwan;Won, Minsu;Song, Tai-jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.70-81
    • /
    • 2020
  • Point-by-point data, which is abundantly collected by vehicles with embedded GPS (Global Positioning System), generate useful information. These data facilitate decisions by transportation jurisdictions, and private vendors can monitor and investigate micro-scale driver behavior, traffic flow, and roadway movements. The information is applied to develop app-based route guidance and business models. Of these, speed data play a vital role in developing key parameters and applying agent-based information and services. Nevertheless, link speed values require different levels of physical storage and fidelity, depending on both collecting and reporting intervals. Given these circumstances, this study aimed to establish an appropriate collection interval to efficiently utilize Space Mean Speed information by vehicles with embedded GPS. We conducted a comparison of Probe-vehicle data and Image-based vehicle data to understand PE(Percentage Error). According to the study results, the PE of the Probe-vehicle data showed a 95% confidence level within an 8-second interval, which was chosen as the appropriate collection interval for Probe-vehicle data. It is our hope that the developed guidelines facilitate C-ITS, and autonomous driving service providers will use more reliable Space Mean Speed data to develop better related C-ITS and autonomous driving services.

An Estimation of Link Travel Time by Using BMS Data (BMS 데이터를 활용한 링크단위 여행시간 산출방안에 관한 연구)

  • Jeon, Ok-Hee;Ahn, Gye-Hyeong;Hyun, Cheol-Seung;Hong, Kyung-Sik;Kim, Hyun-Ju;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.78-88
    • /
    • 2014
  • Now, UTIS collects and provides traffic information by building RSE 1,150(unit) and OBE about 51,000(vehicle). it's inevitable to enlarge traffic information sources which use to improve quality of UTIS traffic information for Stabilizing UTIS's service. but there are missing data sections. And, In this study as a way to overcome these problems, based on BIS(Bus information system) installed and operating in the capital area to develop normal vehicle's link transit time estimation model which is used realtime collecting BMS data, we'll utilize the model to provide missing data section's information. For these problem, we selected partial section of suwon-city, anyang-city followed by drive only way or not and conducted model estimating and verification each of BMS data and UTIS traffic information. Consequently, Case2,4,6,8 presented highly credibility between UTIS communication data and estimated value but In the Case 3,5 we determined to replace communication data of UTIS' missing data section too hard for large error. So we need to apply high credibility model formula adjusting road managing condition and the situation of object section.

Improved Downlink Performance of Transmit Adaptive Array applying Transmit Antenna Selection (적응형 송신 빔 성형 시스템의 순방향 링크 성능 향상을 위한 송신 안테나 선택 방식의 적용)

  • Ahn, Cheol-Yong;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3A
    • /
    • pp.111-118
    • /
    • 2003
  • The transmit adaptive array requires the forward link channel information for evaluating the optimum transmit weight vector in which a feedback channel provides transmitter with the forward link channel information. The larger transmit adaptive array is, the higher required rate of feedback channel is. Therefore we consider the system that the N-transmit antenna system is expanded to the 2N-transmit antenna system, while the feedback channel is maintained as that of N-transmit antenna system. The increase of the number of antennas can produce the additional diversity gain, however the insufficient feedback bits assigned to each antenna aggravates the quantization error. In this paper, we propose the transmit antenna selection in order to improve the performance of transmit adaptive array having an insufficient feedback channel information. The effective method to transmit the weight vector is also introduced. System performances are investigated for the case of N=4 corresponding to the antenna selection diversity schemes on the flat fading channel and the multipath fading channel. The simulation results show that the proposed scheme can improve the system performance by 1 dB when the N is expanded to the 2N, while the feedback channel is restricted to that of N-transmit antenna system.

Erlang Capacity for the Reverse Link of a IS-95 Cellular System According to Approximation Method in Shadowing Channel (전파음영 채널에서 근사방법에 따른 IS-95 셀룰라 시스템의 역방향 링크에 대한 얼랑 용량)

  • Park, Young;Kim, Hang-Rae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.10
    • /
    • pp.3210-3218
    • /
    • 2000
  • In a IS-95 cellular systm, blocking will occur when the reverse link user interference power reaches a predepermmed level which is set to maintam acceptable signal quality. In this paper, it is assumed that a mobile rdio channel is a shadowing channel and Erlang capacity is calculated for the reverse limk of an imperfect power controlled IS-95 cellular system. the blocking probability is derived using lognornal pproximation and the results according to guassian and lognormal approximation method are compared and analyzed respcctively. Assuming that blocking probability is 1% at the data rate of $R_b$=9.6kbps and $R_b$=14.4kbps, it is shown that Erlang capacity using Iognormal approximation is 13.68 Erlang and 7.08 Erlang and then the approximation erroris occurred about 24.4% and 40.4% inthe garssian approximation, respectively. It is also observed that if the power control becomes periect, the Erlang capacity is increased more 6.99 and 4.21 Erlang than that of the imperfect power control that the power contrl error is 2.5dB, and if voice activity is considered as 10%, the Erlang capacity is increased more 8.21 and 1.25 Erlang than that using non voice activity, respectively.

  • PDF

A Block-based Uniformly Distributed Random Node Arrangement Method Enabling to Wirelessly Link Neighbor Nodes within the Communication Range in Free 3-Dimensional Network Spaces (장애물이 없는 3차원 네트워크 공간에서 통신 범위 내에 무선 링크가 가능한 블록 기반의 균등 분포 무작위 노드 배치 방법)

  • Lim, DongHyun;Kim, Changhwa
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1404-1415
    • /
    • 2022
  • The 2-dimensional arrangement method of nodes has been used in most of RF (Radio Frequency) based communication network simulations. However, this method is not useful for the an none-obstacle 3-dimensional space networks in which the propagation delay speed in communication is very slow and, moreover, the values of performance factors such as the communication speed and the error rate change on the depth of node. Such a typical example is an underwater communication network. The 2-dimensional arrangement method is also not useful for the RF based network like some WSNs (Wireless Sensor Networks), IBSs (Intelligent Building Systems), or smart homes, in which the distance between nodes is short or some of nodes can be arranged overlapping with their different heights in similar planar location. In such cases, the 2-dimensional network simulation results are highly inaccurate and unbelievable so that they lead to user's erroneous predictions and judgments. For these reasons, in this paper, we propose a method to place uniformly and randomly communication nodes in 3-dimensional network space, making the wireless link with neighbor node possible. In this method, based on the communication rage of the node, blocks are generated to construct the 3-dimensional network and a node per one block is generated and placed within a block area. In this paper, we also introduce an algorithm based on this method and we show the performance results and evaluations on the average time in a node generation and arrangement, and the arrangement time and scatter-plotted visualization time of all nodes according to the number of them. In addition, comparison with previous studies is conducted. As a result of evaluating the performance of the algorithm, it was found that the processing time of the algorithm was proportional to the number of nodes to be created, and the average generation time of one node was between 0.238 and 0.28 us. ultimately, There is no problem even if a simulation network with a large number of nodes is created, so it can be sufficiently introduced at the time of simulation.

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

Enhanced Spatial Covariance Matrix Estimation for Asynchronous Inter-Cell Interference Mitigation in MIMO-OFDMA System (3GPP LTE MIMO-OFDMA 시스템의 인접 셀 간섭 완화를 위한 개선된 Spatial Covariance Matrix 추정 기법)

  • Moon, Jong-Gun;Jang, Jun-Hee;Han, Jung-Su;Kim, Sung-Soo;Kim, Yong-Serk;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.527-539
    • /
    • 2009
  • In this paper, we propose an asynchonous ICI (Inter-Cell Interference) mitigation techniques for 3GPP LTE MIMO-OFDMA down-link receiver. An increasing in symbol timing misalignments may occur relative to sychronous network as the result of BS (Base Station) timing differences. Such symbol synchronization errors that exceed the guard interval or the cyclic prefix duration may result in MAI (Multiple Access Interference) for other carriers. In particular, at the cell boundary, this MAI becomes a critical factor, leading to degraded channel throughput and severe asynchronous ICI. Hence, many researchers have investigated the interference mitigation method in the presence of asynchronous ICI and it appears that the knowledge of the SCM (Spatial Covariance Matrix) of the asynchronous ICI plus background noise is an important issue. Generally, it is assumed that the SCM estimated by using training symbols. However, it is difficult to measure the interference statistics for a long time and training symbol is also not appropriate for MIMO-OFDMA system such as LTE. Therefore, a noise reduction method is required to improve the estimation accuracy. Although the conventional time-domain low-pass type weighting method can be effective for noise reduction, it causes significant estimation error due to the spectral leakage in practical OFDM system. Therefore, we propose a time-domain sinc type weighing method which can not only reduce the noise effectively minimizing estimation error caused by the spectral leakage but also implement frequency-domain moving average filter easily. By using computer simulation, we show that the proposed method can provide up to 3dB SIR gain compared with the conventional method.

Analysis of Block FEC Symbol Size's Effect On Transmission Efficiency and Energy Consumption over Wireless Sensor Networks (무선 센서 네트워크에서 전송 효율과 에너지 소비에 대한 블록 FEC 심볼 크기 영향 분석)

  • Ahn, Jong-Suk;Yoon, Jong-Hyuk;Lee, Young-Su
    • The KIPS Transactions:PartC
    • /
    • v.13C no.7 s.110
    • /
    • pp.803-812
    • /
    • 2006
  • This paper analytically evaluates the FEC(Forward Error Correction) symbol size's effect on the performance and energy consumption of 802.11 protocol with the block FEC algorithm over WSN(Wireless Sensor Network). Since the basic recovery unit of block FEC algorithms is symbols not bits, the FEC symbol size affects the packet correction rate even with the same amount of FEC check bits over a given WSN channel. Precisely, when the same amount of FEC check bits are allocated, the small-size symbols are effective over channels with frequent short bursts of propagation errors while the large ones are good at remedying the long rare bursts. To estimate the effect of the FEC symbol site, the paper at first models the WSN channel with Gilbert model based on real packet traces collected over TIP50CM sensor nodes and measures the energy consumed for encoding and decoding the RS (Reed-Solomon) code with various symbol sizes. Based on the WSN channel model and each RS code's energy expenditure, it analytically calculates the transmission efficiency and power consumption of 802.11 equipped with RS code. The computational analysis combined with real experimental data shows that the RS symbol size makes a difference of up to 4.2% in the transmission efficiency and 35% in energy consumption even with the same amount of FEC check bits.