• Title/Summary/Keyword: Liner rotation

Search Result 11, Processing Time 0.025 seconds

Engine Friction Reduction Through Liner Rotation (회전 라이너를 이용한 엔진 마찰저감)

  • Joo Shinhyuk;Kim Myungjin;Matthews Ronald D.;Chun Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Cylinder liner rotation is a new concept for reducing piston assembly friction in the internal combustion engine. The purpose of cylinder liner rotation is to reduce the occurrence of boundary and mixed lubrication friction in the piston assembly. This paper reports the results of experiments to quantify the potential of the rotating liner engine. A GM Quad-4 SI engine was converted to single cylinder operation and modified for cylinder liner rotation. The hot motoring method was used to compare the friction loss between the baseline engine and the rotating liner engine. Additionally, tear-down tests were used to measure the contribution of each engine component to the total friction torque. The cycle-averaged motoring torque of the RLE represents a $23\~31\%$ friction reduction compared to the baseline engine for hot motoring tests. Through tear down tests, it was found that the piston assembly friction of the baseline engine is reduced from $90\%$ at 1200 rpm to $71\%$ at 2000 rpm through liner rotation.

A Study on the Prediction of Failure Stress for Table Liner under Fatigue Load (피로하중을 받는 테이블 라이너의 파손응력예측에 관한 연구)

  • 이동우;주원식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.97-105
    • /
    • 2004
  • The vertical roller mill is the important machine grinding and mixing various crude materials in the manufacturing process of portland cement. Table liner is one of grinding elements of vertical roller mill and is subjected to the cyclic bending stress by rollers and the centrifugal force by rotation of table. It demands $4{\times}10^7$ expense of life but has $4{\times}10^6~-8{\times}10^6$ cycle. It fractures at the edge of grinding path of outside roller The repair expense fur it amounts to 30% of total maintenance of vertical roller mill. Therefore, this study shows the fracture mechanism of table liner of vertical roller mill using HDM and fatigue analysis

A Study on on Failure Analysis of Table Liner for Roller Mill (롤러 분쇄기용 테이블 라이너의 파손 해석에 관한 연구)

  • Lee, Dong-Woo;Hong, Soon-Hyeok;Lee, Kyoung-Young;Cho, Seok-Swoo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.163-169
    • /
    • 2003
  • The vertical roller mill is the important machine grinding and mixing various crude materials in the manufacturing process of portland cement. Table liner is one of grinding elements of vertical roller mill and is subjected to the cyclic bending stress by rollers load and the centrifugal force by rotation of table. It demands $4{\times}10^7$ cycle but has $4{\times}10^6{\sim}8{\times}10^6$ cycle. It fractures at the edge of grinding path of outside roller. The repair expense for it amounts to 30% of total maintenance of vertical roller mill. Therefore, this study shows the fracture mechanism of table liner for vertical roller mill using HDM and fatigue analysis

  • PDF

A Study on the Safety Estimation of Table Liner for Vertical Roller Mill Using HDM (구멍뚫기법을 이용한 수직형 롤러 분쇄기용 테이블 라이너의 안전성 평가에 관한 연구)

  • Lee Dong Woo;Hong Soon Hyeok;Cho Seok Swoo;Joo Won Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1221-1228
    • /
    • 2004
  • The vertical roller mill is the important machine grinding and mixing various crude materials in the manufacturing process of portland cement. Table liner is one of grinding elements of vertical roller mill and is subjected to the cyclic bending stress by rollers load and the centrifugal force by rotation of table. It demands $4{\times}10^7$ cycle but has $4{\times}10^6{\sim}8{\times}10^6$ cycle. It fractures at the edge of grinding path of outside roller. The repair expense for it amounts to $30\%$ of total maintenance of vertical roller mill. Therefore, this study shows the fracture mechanism of table liner for vertical roller mill using HDM and fatigue analysis and makes the estimation for safety of vertical roller mill.

Manufacturing Technology for Recycled Aggregate Concrete Using Multiple Rotation Roller and a Complex Trituration System with Convex Liner(New Excellent Technology No. 366, Environmental Technology Verification No. 153) (다중회전체와 요철형라이너가 장착된 복합마쇄장치를 이용한 건식 콘크리트용 순환골재 제조기술(환경신기술 인증 366, 검증153호))

Performance Test of 21AFR Lean Fuel Module at Low and High Operating Conditions (21AFR 희박연료모듈의 저압 및 고압 연소성능시험)

  • Han, Yeoung-Min;Ko, Young-Sung;Yang, Soo-Seok;Lee, Dae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.858-863
    • /
    • 2001
  • In this paper, the test and result of flow and combustion for 21AFR lean fuel models are described. The necessity to develop the low emission combustor has been issued from the concern on the increase of green house and the destruction of ozone layer. To evaluate the flow and combustion performance of new designed 21AFR lean modules, the hydraulic tests in stereo lithographic airflows models, the low pressure combustion tests in three injectors model for weak extinction and ignition and the high pressure combustion tests in single sector for NOx, SAE and efficiency are performed. The low pressure tests reveal that the governing parameters in weak extinction and ignition at atmospheric condition are prefilmer length, swirl flow rotation direction, secondary swirl angle and flow split. As a results of combustion test at high pressure, the efficiency and smoke level are satisfied with performance targets, but EINOx of 17.8 is higher than target value of 13.1. The high pressure tests show that the main parameters influenced on NOx are primary swirl angle, swirl flow rotation direction, heatshield exit angle and liner mixing hole location.

  • PDF

Performance Test of 21AFR Lean Fuel Module at Low and High Operating Conditions (21AFR 희박연료모듈의 저압 및 고압 연소성능시험)

  • Han, Yeoung-Min;Ko, Young-Sung;Yang, Soo-Seok;Lee, Dae-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1132-1137
    • /
    • 2002
  • In this paper, the test results of the combustion for 2 IAFR lean fuel models are described. The need for the low emission combustor has been issued from the concern on the increase of green house and the destruction of ozone layer. To evaluate the flow and combustion performance of newly designed 21AFR lean modules, the hydraulic tests in stereolithographic airflows models, the low pressure combustion tests in three injectors model for weak extinction and ignition and the high pressure combustion tests in single sector for NOx, SAE and efficiency are performed. The low pressure tests reveal that the governing parameters in weak extinction and ignition at atmospheric condition are prefilmer length, swirl flow rotation direction, secondary swirl angle and flow split. As a result of combustion test at high pressure, the efficiency and smoke level are satisfied with performance targets, but EINOx of 17.8 is higher than target value of 13.1 The high pressure tests show that the main parameters influenced on NOx are primary swirl angle, swirl flow rotation direction, heatshield exit angle and liner mixing hole location.

Double-Diffusive Convection Due to Heating from Below in a Rotating Cylindrical Cavity (회전하는 원통형밀폐용기내의 아랫면가열에 의한 이중확산대류에 관한 실험적 연구)

  • 강신형;이태홍;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1731-1740
    • /
    • 1995
  • Experimental investigations have been made to study the double-diffusive nature of convection of an initially stratified salt-water solution due to heating from below in a rotating cylindrical cavity. The objective is to examine the flow phenomena and the heat transfer characteristics according to the changes in temperature gradient, concentration gradient and rotating velocity of cavity. Thermal and solutal boundary conditions at side wall are adiabatic and impermeable, respectively. The top and bottom plate are maintained each at constant temperature and concentration. The cavity is put into a state of solid body rotation. Like the stationary case, the types of initially-formed flow pattern are classified into three regimes depending on the effective Rayleigh number and Taylor number; stagnant flow regime, single mixed-layer flow regime and successively formed multi-mixed layer flow regime. At the same effective Rayleigh number, the number of initially-formed mixed layer and its growth rate decrease as the effect of rotation increases. The temperature and concentration profiles are both uniform in each layer due to convective mixing in the layered-flow regime, but look both liner in stagnant flow regime and single mixed-layer flow regime. At the interface between adjacent layers, the temperature changes smoothly but the concentration changes rapidly.

FLOW ANALYSIS OF THE IMPELLER WITH DIFFERENT INLET ANGLES IN THE CENTRIFUGAL PUMP (원심펌프 임펠러 입구각도 변화에 따른 유동해석)

  • Lee, S.H.;Lee, D.R.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.58-63
    • /
    • 2016
  • This research is to investigate the performance analysis for efficient design with four different inlet angles of the centrifugal pump impeller. Assuming that the rotation speed and exit angle are fixed, Four cases of the centrifugal pumps were numerically analyzed using ANSYS FLUENT. According to the numerical results, head and pump efficiency at inlet angle of 20 degrees was highest. There is no big difference of efficiency at inlet angle of 20 degrees compared to the inlet angle 30 degrees. About 15% of efficiency at inlet angle of 20 degrees is higher than inlet angle of 40 degrees and 31% higher than inlet angle oof 50 degrees. Because there is liner functional relationship between speed and flow rate, suction flow rate at inlet angle of 20 degrees is superior to the inlet angle of 30 degrees as much as 0.89%, inlet angle of 40 degrees as 13%, inlet angle of 50 as 28.4%. Head at inlet angle of 20 degrees is superior to the inlet angle of 30 degrees as much as 0.4%, inlet angle of 40 degrees as 2.7%, inlet angle of 50 degrees as 3.2%. There should exist highest efficiency and also optimal design shape at inlet angle of 20 degrees.

A Study on the Preocessing of high Runctional Composites and the Evaluation of Its Characteristics (고기능성 복합재료의 제조와 그 특성평가에 관한 연구)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.139-145
    • /
    • 1998
  • Filament winding method is widely used for composite fabrications using low viscosity liquid for-mation and processing asymmetrical structures of pressure vessel pipe rocket motor case etc. The filament winding method is affected by several parameters such as pot life of process time viscosi-ty of resin filament winding temperature and schedules curing condition and post curing condi-tion of resin. To develope high functional composite materials the rotation(5, 15, 20, 30rpm) of the winding machine was controlled by D.C motor. And the wiper to give proper tension was equipped between strand and resin bath. The resin is hooked by the design wiper. The adequate cure schedule was found by DSC. NOL ring test is carried out to investigate the basic physical properties such as design technology. The void contents in filament winding is generally higher than that of the prepreg laminated plate. These high contents of void can make a crack in resin in spite of low deformation. These problem was solved by giving tension in processing. To improve the characteristics of fiber volume fraction void contents resin/fiber bonding the winding speedc is changed under constant tension. It was found that resin impregnation was not different from in fiber contents void contents at the range of 0.5~1kg tension but it was found that resin was not impregnated at the above of 1.5kg tension. In burst test a pure PE liner was failed at a nozzle part under the $14kg/\textrm{cm}^2$ pressure but a pressure vessel of CNG was failed at a cylinder part under the $200kg/\textrm{cm}^2$ pressure.

  • PDF