• Title/Summary/Keyword: Linear variable displacement transformer

Search Result 22, Processing Time 0.015 seconds

High-rate Single-Frequency Precise Point Positioning (SF-PPP) in the detection of structural displacements and ground motions

  • Mert Bezcioglu;Cemal Ozer Yigit;Ahmet Anil Dindar;Ahmed El-Mowafy;Kan Wang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.589-599
    • /
    • 2024
  • This study presents the usability of the high-rate single-frequency Precise Point Positioning (SF-PPP) technique based on 20 Hz Global Positioning Systems (GPS)-only observations in detecting dynamic motions. SF-PPP solutions were obtained from post-mission and real-time GNSS corrections. These include the International GNSS Service (IGS)-Final, IGS real-time (RT), real-time MADOCA (Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis), and real-time products from the Australian/New Zealand satellite-based augmentation systems (SBAS, known as SouthPAN). SF-PPP results were compared with LVDT (Linear Variable Differential Transformer) sensor and single-frequency relative positioning (SF-RP) solutions. The findings show that the SF-PPP technique successfully detects the harmonic motions, and the real-time products-based PPP solutions were as accurate as the final post-mission products. In the frequency domain, all GNSS-based methods evaluated in this contribution correctly detect the dominant frequency of short-term harmonic oscillations, while the differences in the amplitude values corresponding to the peak frequency do not exceed 1.1 mm. However, evaluations in the time domain show that SF-PPP needs high-pass filtering to detect accurate displacement since SF-PPP solutions include trends and low-frequency fluctuations, mainly due to atmospheric effects. Findings obtained in the time domain indicate that final, real-time, and MADOCA-based PPP results capture short-term dynamic behaviors with an accuracy ranging from 3.4 mm to 8.5 mm, and SBAS-based PPP solutions have several times higher RMSE values compared to other methods. However, after high-pass filtering, the accuracies obtained from PPP methods decreased to a few mm. The outcomes demonstrate the potential of the high-rate SF-PPP method to reliably monitor structural and earthquake-induced ground motions and vibration frequencies of structures.

A Motor-Driven Focusing Mechanism for Small Satellite (소형위성용 모터 구동형 포커싱 메커니즘)

  • Jung, Jinwon;Choi, Junwoo;Lee, Dongkyu;Hwang, Jaehyuck;Kim, Byungkyu
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.75-80
    • /
    • 2018
  • The working principle of a satellite camera involves a focusing mechanism for controlling the focus of the optical system, which is essential for proper functioning. However, research on focusing mechanisms of satellite optical systems in Korea is in the beginning stage and developed technology is limited to a thermal control type. Therefore, in this paper, we propose a motor-driven focusing mechanism applicable to small satellite optical systems. The proposed mechanism is designed to generate z-axis displacement in the secondary mirror by a motor. In addition, three flexure hinges have been installed on the supporter for application of preload on the mechanism resulting in minimization of the alignment error arising due to manufacturing tolerance and assembly tolerance within the mechanism. After fabrication of the mechanism, the alignment errors (de-space, de-center, and tilt) were measured with LVDT sensors and laser displacement meters. Conclusively, the proposed focusing mechanism could achieve proper alignment degree, which can be applicable to small satellite optical system.