• Title/Summary/Keyword: Linear table

Search Result 373, Processing Time 0.022 seconds

COMPUTATION OF THE COMPLEX CHARACTERS OF THE GROUP AUT($GL_7(2)$)

  • M.R.Darafsheh;M.R.Darafsheh
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.193-210
    • /
    • 1997
  • In this paper we find the irreducible complex characters of the automorphism group of the general linear group of degree 7 over a field with two elements. It is shown that this group has 114 irreducible complex characters.

Linear algebra algorithm for the optimal solution in the Blackout game (바둑판을 이용한 흑백 게임의 최적해를 구하는 선형대수학 알고리즘)

  • 이상구;박종빈;양정모;김익표
    • The Mathematical Education
    • /
    • v.43 no.1
    • /
    • pp.87-96
    • /
    • 2004
  • For finding the optimal strategy in Blackout game which was introduced in the homepage of popular mono "Beautiful mind", we develope a mathematical proof and an algorithm with a software. We only use the concept of basis and knowledge of basic linear algebra. This process can be extended to the fullsize Go table problem and shows why we have to study mathematics at the college level.

  • PDF

Corrective Machining Algorithm for Improving the Motion Accuracy of Hydrostatic Table (유정압테이블의 정밀도향상을 위한 수정가공 알고리즘)

  • Park, Chun-Hong;Lee, Chan-Hong;Lee, Hu-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.62-69
    • /
    • 2002
  • For improving the motion accuracy of hydrostatic table, corrective machining algorithm is proposed in this paper. The algorithm consists of three main processes. reverse analysis is performed firstly to estimate rail profile from measured linear and angular motion error, in the algorithm. For the next step, corrective machining information is decided as referring to the estimating rail profile. Finally, motion errors on correctively machined rail are analized by using motion error analysis method proposed in the previous paper. These processes can be iterated until the analized motion errors are satisfied with target accuracy. In order to verify the validity of the algorithm theoretically, motion errors by the estimated rail, after corrective machining, are compared with motion errors by true rail assumed as the measured value. Estimated motion errors show good agreement with assumed values, and it is confirmed that the algorithm is effective to acquire the corrective machining information to improve the accuracy of hydrostatic table.

Non-Contact Level on Air Levitation Table with Porous Chamber Array (다공성 패드를 갖는 챔버의 배열에 따른 공기 부상 테이블의 비접촉 부상 수준에 대한 연구)

  • Kim, Joon Hyun;Jeong, Young Suk;Lee, Tae Geol;Kim, Tae Hoon;Jung, Hyo Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.913-920
    • /
    • 2013
  • This paper presents an applicable basic design that can configure non-contact levitation table for conveying a large sheet of glass. The suggested air levitation table consists of a series of air chambers with porous pads and fans as the conveyor system. The air supply chambers are arrayed to supply an adequately strong upward airflow for supporting the glass. Levitation is controlled by the size and discharge velocity, of the chamber arrays, as well as the glass supporting height. After pre-evaluation of the glass rigidity and the filer functional performance, a one-way fluid structure interface (FSI) analysis is performed for predicting pressure and deflection working of the 8G glass in the transverse and longitudinal directions, respectively. After comparing calculated levels of flatness of the glass, it determines the chamber array for the linear non-contact conveying motion.

Dynamic Test of Structural Models Using 4m $\times$ 4m Shaking Table (4m$\times$4m 진동대를 이용한 구조모델의 동적실험)

  • 이한선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.207-214
    • /
    • 1997
  • The objective of this study is to review the current stare of earthquake simulation techniques using the shaking table and check the reliability. One degree-of-freedom(d.o.f.)and three d.o.f. aluminium shear models were used and 4m$\times$4m 6 d.o.f. shaking table was excitated in one horizontal direction to simulate 1940 El centro earthquake accelerogram (NS component). When the acceleration history of shaking table is compared to the desired one, it can be found that the overall histories are very similar, but that the lower frequency range (0~2 Hz) of the actual excitation has generally lower amplitude than that of the desired in fourier transform amplitude. Free vibration and white noise tests have shown almost the same values for natural frequencies, but shown quite different values for damping ratios, that is, 1.37% in case of r\free vibration test vs 14.76% in case of white noise test. The time histories of story shear versus story drift show the globally linear elastic behaviors. But the elliptical shape of the histories with one of the axis being the stiffness of the story implies the effect of viscous damping.

  • PDF

Numerical studies on the effects of the lateral boundary on soil-structure interaction in homogeneous soil foundations

  • Li, Z.N.;Li, Q.S.;Lou, M.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.421-434
    • /
    • 2005
  • In this paper, the finite element method is applied to investigate the effect of the lateral boundary in homogenous soil on the seismic response of a superstructure. Some influencing factors are presented and discussed, and several parameters are identified to be important for conducting soil-structure interaction experiments on shaking tables. Numerical results show that the cross-section width L, thickness H, wave propagation velocity and lateral boundaries of soil layer have certain influences on the computational accuracy. The dimensionless parameter L/H is the most significant one among the influencing factors. In other words, a greater depth of soil layer near the foundation should be considered in shaking table tests as the thickness of the soil layer increases, which can be regarded as a linear relationship approximately. It is also found that the wave propagation velocity in soil layer affects the numerical accuracy and it is suggested to consider a greater depth of the soil layer as the wave propagation velocity increases. A numerical study on a soil-structure experimental model with a rubber ring surrounding the soil on a shaking table is also conducted. It is found the rubber ring has great effect on the soil-structure interaction experiments on shaking table. The experimental precision can be improved by reasonably choosing the elastic parameter and width of the rubber ring.

Control Performance Improvement for Linear Compressors (리니어 컴프레서의 제어성능 향상)

  • Kim, Gyu-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.594-599
    • /
    • 2007
  • A dosed-loop sensorless stroke control system for a linear compressor has been designed. The motor parameters are identified as a function of the piston position and the motor current. They are stored in ROM table and used later for the accurate estimation of piston position. Also it was attempted to approximate the identified motor parameters to the 2nd-order surface functions. The 2nd-order surface functions are divided into 2 or 4 sub-sections for more precise identification of motor parameters. Some experimental results are given in order to show the feasibility of the proposed control schemes for linear compressors.

Graphical Methods for Hierarchical Log-Linear Models

  • Hong, Chong-Sun;Lee, Ui-Ki
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.755-764
    • /
    • 2006
  • Most graphical methods for categorical data can describe the structure of data and represent a measure of association among categorical variables. Among them the polyhedron plot represents sequential relationships among hierarchical log-linear models for a multidimensional contingency table. This kind of plot could be explored to describe the differences among sequential models. In this paper we suggest graphical methods, containing all the information, that reflect the relationship among all log-linear models in a certain hierarchical structure. We use the ideas of a correlation diagram.

Sensorless Control for Linear Compressors (리니어 컴프레서를 위한 센서리스 제어)

  • Kim Gyu-Sik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.421-427
    • /
    • 2005
  • A closed-loop sensorless stroke control system for a linear compressor has been designed. The motor parameters are identified as a function of the piston position and the motor current. They are stored in ROM table and used later for the accurate estimation of piston position. Also it was attempted to approximate the identified motor parameters to the 2nd-order surface functions. Some experimental results are given in order to show the feasibility of the proposed control schemes for linear compressors.

A Miniature Air-Bearing Positioning Stage with a Magnet-Moving Linear Motor (영구자석 이동형 선형 모터를 가진 초소형 공기베어링 스테이지)

  • Ro, Seung-Kook;Park, Jong-Kweon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.89-96
    • /
    • 2007
  • In this paper, a new air bearing stage with magnetic preload and a linear motor has been developed for the small precision machine systems. The new air bearing stage is unique in the sense that permanent magnets attached bottom of the iron core of table are used not only for preloading air bearings in vertical direction but also for generating thrust force by current of the coil at base. The characteristics of air bearings using porous pads were analyzed with numerical method, and the magnetic circuit model was derived for linear motor for calculating required preload force and thrust force. A prototype of single axis miniature stage with size of $120(W){\times}120(L){\times}50(H)\;mm^3$ was designed and fabricated and examined its performances, vertical stiffness, load capacity, thrust force and positioning resolution.