• Title/Summary/Keyword: Linear relation

Search Result 1,185, Processing Time 0.032 seconds

On dence column splitting in interial point methods of linear programming (내부점 선형계획법의 밀집열 분할에 대하여)

  • 설동렬;박순달;정호원
    • Korean Management Science Review
    • /
    • v.14 no.2
    • /
    • pp.69-79
    • /
    • 1997
  • The computational speed of interior point method of linear programming depends on the speed of Cholesky factorization. If the coefficient matrix A has dense columns then the matrix A.THETA. $A^{T}$ becomes a dense matrix. This causes Cholesky factorization to be slow. We study an efficient implementation method of the dense column splitting among dense column resolving technique and analyze the relation between dense column splitting and order methods to improve the sparsity of Cholesky factoror.

  • PDF

Characteristics of Efficient Faces in Multi-objective Linear Programming (다목적 선형계획 문제에서 유효면의 특성)

  • 소영섭;박순달
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.2
    • /
    • pp.1-12
    • /
    • 1991
  • The purpose of this paper are to find the relations between efficient faces and the regions of weights on the objective functions in Multi-objective Linear Programming. First, we define the region of weights corresponding to an efficient face, and find the changing pattern within the region of weights. Second, we find the eqution of the dimensional relation between the efficient face and the region of weight corrsponding to it.

  • PDF

ON CONDITIONALLY DEFINED FIBONACCI AND LUCAS SEQUENCES AND PERIODICITY

  • Irby, Skylyn;Spiroff, Sandra
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.1033-1048
    • /
    • 2020
  • We synthesize the recent work done on conditionally defined Lucas and Fibonacci numbers, tying together various definitions and results generalizing the linear recurrence relation. Allowing for any initial conditions, we determine the generating function and a Binet-like formula for the general sequence, in both the positive and negative directions, as well as relations among various sequence pairs. We also determine conditions for periodicity of these sequences and graph some recurrent figures in Python.

Neural network based position estimation of mobile robot in slippery environment (Slip이 발생할 때 신경회로망을 이용한 이동로보트의 위치추정에 관한 연구)

  • 최동엽;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.133-138
    • /
    • 1993
  • This paper presents neural network based position estimation method in slippery environment as an approach to solve one of problems which are engaged in dead reckoning method. Position estimator is composed of slip detector and linear velocity estimator. Both of them are based on the fact that dynamic characteristic of mobile robot in slippery environment is different from the case without slip. To find out the dynamic relation among driving torque, angular acceleration of driving wheel and linear acceleration of mobile robot, accelerometer is used for measuring acceleration of mobile robot and neural network is used for dynamic system identifier in slippery environment.

  • PDF

Linear Relationships between Thermodynamic Parameters. Part 6 Solvent Effect on Chloride Exchanges in Benzyl Chloride (열역학함수간의 직선관계 (제6보) 염화벤질의 염소교환에 미치는 용매효과)

  • Lee, Ik-Choon;Park, Yong-Ja
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.160-162
    • /
    • 1968
  • Rate constants and activation parameters have been petermined for the chloride exchanges of benzyl chloride in 60, 70, 80 and 90 vol.% ethanol-water solutions. Results showed a good linearity when appiled to our general equation. The significance of this linear fit has been discussed in conjunction with the Dewar's relation which was derived from the PMO method.

  • PDF

OSCILLATION AND ASYMPTOTIC STABILITY BEHAVIOR OF A THIRD ORDER LINEAR IMPULSIVE EQUATION

  • WAN ANHUA;MAO WEIHUA
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.405-417
    • /
    • 2005
  • In this paper, the oscillation and asymptotic stability behavior of a third order linear impulsive equation are investigated. A lemma is presented to deal with the sign relation of the nonoscillatory solutions and their derived functions. By the lemma explicit sufficient conditions are obtained for all solutions either oscillating or asymptotically tending to zero. Two illustrative examples are proposed to demonstrate the effectiveness of the conditions.

Electromechanical Relation of Conductive Materials with High Electrical Resistance and Its Application to the Estimation of In_situ Stress of Structural Tendons (고저항 전도체의 전기기계적 상관작용과 작용응력 예측이 가능한 긴장재의 제안)

  • Zi, Goangseup;Jun, Kiwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.363-370
    • /
    • 2006
  • It is proposed that the electromechanical relation of the conductive materials with high electrical resistance may be used to estimate the current stress of prestressing tendons. To choose the best conductive material to this end, we studied the electromechanical relations of carbon fibers and metalic heat wires experimentally. The strain of those materials was controlled instead of the stress during the experiment. It is found that the relation of carbon fibers can be modelled by a parabolic(or hyperbolic) function in the early stage of deformation. However because the relation is not consistent when it is unloaded and reload, carbon fibers are not suitable for this purpose. Metallic heat wires show a consistent linear relation during loading and unloading in the elastic deformation and are suitable for this purpose. To estimate the electromechanics relation of metallic wires, we developed a simple formula based on the rigid plasticity. We propose a new kind of prestressing tendons whose stress can be monitored. As a side result of this study, we found that the electromechanical relation of carbon fibers without epoxy matrix becomes almost linear after a certain strain.

Design the Autopilot System of using GA Algorithm

  • Lee, Sang-Min;Choo, Yeon-Gyu;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.699-703
    • /
    • 2004
  • The autopilot system targets decreasing labor, working environment, service safety security and elevation of service efficiency. Ultimate purpose is minimizing number of crew for guarantee economical efficiency of shipping service. Recently, being achieving research about Course Keeping Control, Track Keeping Control, Roll-Rudder Stabilization, Dynamic ship Positioning and Automatic Mooring Control etc. which compensate nonlinear characteristic using optimizing control technique. And application research is progressing using real ship on actual field. Relation of Rudder angle which adjusted by Steering Machine and ship-heading angle are non-linear. And, Load Condition of ship acts as non-linear element that influence to Parameter of ship. Also, because the speed of a current and direction of waves, velocity and quantity of wind etc. that id disturbance act in non-linear form, become factor who make service of shipping painfully. Therefore, service system of shipping requires robust control algorithm that can overcome nonlinearity. In this paper, Using GA algorithm,design autopilot system of ship that could overcome the non-linear factor of ship and disturbance and examined result through simulation.

  • PDF

Design of Linear Recursive Target State Estimator for Collision Avoidance System (차량 충돌 방지 시스템을 위한 선형 순환 표적 추정기 설계)

  • Han, Seul-Ki;Ra, Won-Sang;Whang, Ick-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1740-1741
    • /
    • 2011
  • This paper proposes a new linear recursive target state estimator for automotive collision warning system. The target motion is modeled in Cartesian coordinate system while the radar measurements such as range, line-of-sight angle and range rate are obtained in polar coordinate system. To solve the problem by nonlinear relation between these two coordinate system, a practical linear filter design scheme employing the predicted line-of-sight Cartesian coordinate system (PLCCS) is proposed. Especially, PLCCS can effectively incorporate range rate measurements into target tracking system. It is known that the utilization of range rate measurements enables the improvement of target tracking performance. Moreover, PLCCS based target tracking system is implemented by linear recursive filter structure and hence is more suitable scheme for the development of reliable collision warning system. The performance of the proposed method is demonstrated by computer simulations.

  • PDF

Non-linear study of mode II delamination fracture in functionally graded beams

  • Rizov, Victor I.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.263-271
    • /
    • 2017
  • A theoretical study was carried-out of mode II delamination fracture behavior of the End Loaded Split (ELS) functionally graded beam configuration with considering the material non-linearity. The mechanical response of ELS was modeled analytically by using a power-law stress-strain relation. It was assumed that the material is functionally graded transversally to the beam. The non-linear fracture was investigated by using the J-integral approach. Equations were derived for the crack arm curvature and zero axes coordinate that are needed for the J-integral solution. The analysis developed is valid for a delamination crack located arbitrary along the beam height. The J-integral solution was verified by analyzing the strain energy release rate with considering material non-linearity. The effects of material gradient, non-linear material behavior and crack location on the fracture were evaluated. The solution derived is suitable for parametric analyses of non-linear fracture. The results obtained can be used for optimization of functionally graded beams with respect to their mode II fracture performance. Also, such simplified analytical models contribute for the understanding of delamination fracture in functionally graded beams exhibiting material non-linearity.