• Title/Summary/Keyword: Linear parameter varying system

Search Result 81, Processing Time 0.023 seconds

Fuzzy Pre-Compensated PI Control of Active Filters

  • Singh, Bhim;Singhal, Varun
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.141-147
    • /
    • 2008
  • This paper deals with a new and improved control technique for shunt active filters (AF) used for compensating unwanted harmonic currents injected in the mains due to nonlinear varying loads. This work is motivated by the need to find a permanent solution to the rigorous hit and trial method for evaluating system parameters in an indirect control of AF. A fuzzy pre-compensated PI (Proportional-Integral) controller is used to fuzzify the reference DC voltage of AF to the controller input so that the overshoots and undershoots in its DC link voltage are minimized and the settling time is improved. A three-phase diode rectifier with R-L (Resistive-Inductive) load is used as a non-linear load to study the effectiveness of the proposed controller of the AF. Robustness to filter parameter variations, insensitivity to controller parameter variations, and transient response has been taken as performance evaluation parameters. The results are shown through simulations in Matlab using power system block sets to demonstrate the capability of the proposed controller of the AF.

Control strategy for the substructuring testing systems to simulate soil-structure interaction

  • Guo, Jun;Tang, Zhenyun;Chen, Shicai;Li, Zhenbao
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1169-1188
    • /
    • 2016
  • Real-time substructuring techniques are currently an advanced experimental method for testing large size specimens in the laboratory. In dynamic substructuring, the whole tested system is split into two linked parts, the part of particular interest or nonlinearity, which is tested physically, and the remanding part which is tested numerically. To achieve near-perfect synchronization of the interface response between the physical specimen and the numerical model, a good controller is needed to compensate for transfer system dynamics, nonlinearities, uncertainties and time-varying parameters within the physical substructures. This paper presents the substructuring approach and control performance of the linear and the adaptive controllers for testing the dynamic characteristics of soil-structure-interaction system (SSI). This is difficult to emulate as an entire system in the laboratory because of the size and power supply limitations of the experimental facilities. A modified linear substructuring controller (MLSC) is proposed to replace the linear substructuring controller (LSC).The MLSC doesn't require the accurate mathematical model of the physical structure that is required by the LSC. The effects of parameter identification errors of physical structure and the shaking table on the control performance of the MLSC are analysed. An adaptive controller was designed to compensate for the errors from the simplification of the physical model in the MLSC, and from parameter identification errors. Comparative simulation and experimental tests were then performed to evaluate the performance of the MLSC and the adaptive controller.

(Robust Non-fragile $H^\infty$ Controller Design for Parameter Uncertain Systems) (파라미터 불확실성 시스템에 대한 견실 비약성 $H^\infty$ 제어기 설계)

  • Jo, Sang-Hyeon;Kim, Gi-Tae;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.3
    • /
    • pp.183-190
    • /
    • 2002
  • This paper describes the synthesis of robust and non-fragile H$\infty$ state feedback controllers for linear varying systems with affine parameter uncertainties, and static state feedback controller with structured uncertainty. The sufficient condition of controller existence, the design method of robust and non-fragile H$\infty$ static state feedback controller, and the set of controllers which satisfies non-fragility are presented. The obtained condition can be rewritten as parameterized Linear Matrix Inequalities(PLMls), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. However, in contrast to LMIs, PLMIs feasibility problems involve infinitely many LMIs hence are inherently difficult to solve numerically. Therefore PLMls are transformed into standard LMI problems using relaxation techniques relying on separated convexity concepts. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of controller gain variations within a degree.

New Approach of Time-varying Switching Hyperplane in Multivariable Variable Structure Control Systems (다변수 가변구조 제어 시스템에서 시변 스위칭 초평면의 새로운 시도)

  • Lee, Ju-Jang;Kim, Jong-Jun;Kim, Eun-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.402-406
    • /
    • 1990
  • A new approach of a time-varying switching hyperplane based on the theory of variable structure system (VSS) is proposed for the control of multivariable systems. While the conventional switching surface can net achieve the robust performance against parameter variations and disturbances before the sliding mode occurs, the proposed switching hyperplane, which is obtained from the eigen-structure assignment theory powerfully used in the linear multivariable systems, ensures the sliding mode from the initial state. And new continuous control input which guarantees the sliding mode is proposed. This new control input does not arise chattering problem which arises with the conventional control input of variable structure control systems. Through numerical examples, the expellant performances of the proposed controller are verified.

  • PDF

A 3-DOF forced vibration system for time-domain aeroelastic parameter identification

  • Sauder, Heather Scot;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.481-500
    • /
    • 2017
  • A novel three-degree-of-freedom (DOF) forced vibration system has been developed for identification of aeroelastic (self-excited) load parameters used in time-domain response analysis of wind-excited flexible structures. This system is capable of forcing sinusoidal motions on a section model of a structure that is used in wind tunnel aeroelastic studies along all three degrees of freedom - along-wind, cross-wind, and torsional - simultaneously or in any combination thereof. It utilizes three linear actuators to force vibrations at a consistent frequency but varying amplitudes between the three. This system was designed to identify all the parameters, namely, aeroelastic- damping and stiffness that appear in self-excited (motion-dependent) load formulation either in time-domain (rational functions) or frequency-domain (flutter derivatives). Relatively large displacements (at low frequencies) can be generated by the system, if required. Results from three experiments, airfoil, streamlined bridge deck and a bluff-shaped bridge deck, are presented to demonstrate the functionality and robustness of the system and its applicability to multiple cross-section types. The system will allow routine identification of aeroelastic parameters through wind tunnel tests that can be used to predict response of flexible structures in extreme and transient wind conditions.

Kalman Randomized Joint UKF Algorithm for Dual Estimation of States and Parameters in a Nonlinear System

  • Safarinejadian, Behrouz;Vafamand, Navid
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1212-1220
    • /
    • 2015
  • This article presents a new nonlinear joint (state and parameter) estimation algorithm based on fusion of Kalman filter and randomized unscented Kalman filter (UKF), called Kalman randomized joint UKF (KR-JUKF). It is assumed that the measurement equation is linear. The KRJUKF is suitable for time varying and severe nonlinear dynamics and does not have any systematic error. Finally, joint-EKF, dual-EKF, joint-UKF and KR-JUKF are applied to a CSTR with cooling jacket, in which production of propylene glycol happens and performance of KR-JUKF is evaluated.

Design of Robust Guaranteed Cost State Feedback Controller for Uncertain Discrete-time Singular Systems using LMI (선형행렬부등식을 이용한 불확실성 이산시간 특이시스템의 강인 보장비용 상태궤환 제어기 설계)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1429-1433
    • /
    • 2008
  • In this paper, we consider the design method of robust guaranteed cost controller for discrete-time singular systems with norm-bounded time-varying parameter uncertainty. In order to get the optimum(minimum) value of guaranteed cost, an optimization problem is given by linear matrix inequality (LMI) approach. The sufficient condition for the existence of controller and the upper bound of guaranteed cost function are proposed in terms of strict LMIs without decompositions of system matrices. Numerical examples are provided to show the validity of the presented method.

A Study on the SDINS's Gyro Bias Calibration Method in Disturbances (외란을 고려한 스트랩다운 관성항법장치 자이로 바이어스 교정기법)

  • Lee, Youn-Seon;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.368-377
    • /
    • 2009
  • In this paper we study the gyro bias calibration method of SDINS(Strap-Down Inertial Navigation System). Generally, SDINS's calibration is performed in 2-axis(or 3-axis) rate table with chamber for varying ambient temperature. We assumed that the majority of calibration-parameter except for gyro bias is knowned. During gyrobias calibration procedure, it can be induced some disturbances(accelerometer's short-term error induced rate table rotation and anti-vibration mount's rotation). In these cases, old gyro-bias calibration methods(using velocity error or attitude error) have an error, because these disturbances are not detectable at the same time. So that, we propose a new gyro-bias calibration method(heading error minimizing using equivalent linear transformation) that can detect anti-vibration mount's rotation. And we confirm efficiency of the new gyro-bias calibration method by simulation.

ROBUST OUTPUT FEEDBACK $H\infty$ CONTROL FOR UNCERTAIN DELAYED SINGULAR SYSTEMS

  • Kim, Jong-Hae;Lim, Jong-Seul
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.513-522
    • /
    • 2006
  • This paper considers a robust output feedback $H\infty$ controller design method for singular systems with time-varying delay in state and parameter uncertainty in system matrix by an LMI approach and observer based technique, which can be solved efficiently by convex optimization. The sufficient condition for the existence of controller and the controller design method are presented by strict LMI(linear matrix inequality) approach. Since the obtained condition can be expressed as an LMI form, all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement and changes of variables.

Optimal Temperature Tracking Control of a Polymerization Batch Reactor by Adaptive Input-Output Linearization

  • Noh, Kap-Kyun;Dongil Shin;Yoon, En-Sup;Rhee, Hyun-Ku
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.62-74
    • /
    • 2002
  • The tracking of a reference temperature trajectory in a polymerization batch reactor is a common problem and has critical importance because the quality control of a batch reactor is usually achieved by implementing the trajectory precisely. In this study, only energy balances around a reactor are considered as a design model for control synthesis, and material balances describing concentration variations of involved components are treated as unknown disturbances, of which the effects appear as time-varying parameters in the design model. For the synthesis of a tracking controller, a method combining the input-output linearization of a time-variant system with the parameter estimation is proposed. The parameter estimation method provides parameter estimates such that the estimated outputs asymptotically follow the measured outputs in a specified way. Since other unknown external disturbances or uncertainties can be lumped into existing parameters or considered as another separate parameters, the method is useful in practices exposed to diverse uncertainties and disturbances, and the designed controller becomes robust. And the design procedure and setting of tuning parameters are simple and clear due to the resulted linear design equations. The performances and the effectiveness of the proposed method are demonstrated via simulation studies.