• Title/Summary/Keyword: Linear motors

Search Result 386, Processing Time 0.037 seconds

Linear Electric Motors in Machining Processes

  • Gieras, Jacek F.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.380-389
    • /
    • 2013
  • Application of linear electric motors to automation of manufacturing processes, gantry robots, machining processes, machining centers, additive manufacturing and laser scribing has been discussed. The paper focuses on replacement of ball lead screw mechanisms with linear electric motors, linear motor driven positioning stages, linear motor driven gantries, machining centers, machining of large objects and industrial lasers. The best linear electric motors for application to machining processes are permanent magnet (PM) linear synchronous motors (LSMs), especially those without PMs in the reaction tail, e.g., high thrust density linear (HDL) LSMs and PM flux switching (FS) LSMs.

Parallel Operation Characteristics of Two Linear Induction Motors (선형 유도전동기의 병렬 운전 특성 실험)

  • Park Seung-Chan;Kim Kyung-Min
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.44-48
    • /
    • 2005
  • In general, the parallel-connected linear induction motors(LIM) are fed by one VVVF inverter in the magnetically levitated vehicle(MAGLEV) or linear motor subway drives. The air gap length of the parallel-connected linear induction motors operating at a grade or curved sections can be different each other. The air gap difference of the two motors attached to the same module causes unequal phase currents, asymmetic thrust and attraction force generation. In this paper, parellel-connected linear induction motors are operated by one IGBT inverter under the different air gap condition so that the phase current characteristics are examined experimentally.

  • PDF

Improvement of the Thermal Behavior of the Secondary Part of Synchronous Linear Motors with High Speed and Thrust (고속.대추력 동기식 리니어모터 세컨더리 파트의 열특성 향상)

  • Eun, In-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.505-512
    • /
    • 2011
  • Linear permanent magnet synchronous motors utilize high-energy product permanent magnet to produce high thrust, velocity and acceleration. Such motors are finding applications requiring high positioning accuracy and speed response, for example, machine tools, in the absence of mechanical gears and ball screw systems. A disadvantage of the linear motors is high power loss in comparison with rotary motors. For the application of the linear motors to machine tools, it is required to use water coolers and to improve the thermal behavior through insulation and structure optimization or control strategies. This paper presents the function of the secondary part of the linear synchronous motor as to the thermal behavior and the improving method. The result shows cooling pipe combined with an insulation layer is a suitable design for improving of the thermal behavior.

Improvement of the Thermal Behavior of Linear Motors through Insulation Layer (단열재에 의한 리니어모터의 열특성의 향상)

  • Eun, L.D.;Lee, C.M.;Chung, W.J.;Choi, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.785-790
    • /
    • 2001
  • Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools, because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, heat sources of a synchronous linear motor with high velocity and force are measured and analyzed. To improve the thermal stiffness of the linear motor, an insulation layer with low thermal conductivity is inserted between cooler and machine table. Some effects of the insulation layer are presented.

  • PDF

A Study on Improvement of the Thermal Stability for Development of Linear Motors with High Speed and Accuracy (고속.정밀 이송용 리니어모터 개발을 위한 열적 안정성 향상에 관한 연구)

  • Hwang, Young-Kug;Lee, Choon-Man;Eun, In-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.126-133
    • /
    • 2008
  • Linear motors are efficient mechanism that offers high speed and positioning accuracy. By eliminating mechanical transmission mechanisms such as ball screw or rack-pinion, much higher speed and greater acceleration can be achieved without backlash or excessive friction. However, an important disadvantage of linear motor system is its high power loss and heating up of motor and neighboring machine components on operation. For the application of the linear motors to precision machine tools an effective cooling method and thermal optimizing measures are required. This paper presents an investigation into the thermal behavior of linear motors with the objective of deriving the optimum cooling conditions. To reach these goals several experiments were carried out, varying operating and cooling conditions. From the experimental results, this research proposed cooling conditions to improve the thermal characteristics of the linear motors.

Comparison between Asynchronous and Synchronous Linear Motors as to Thermal Behavior

  • Eun, In-Ung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.61-68
    • /
    • 2001
  • A linear motor has a lot of advantages in comparison with conventional feed mechanisms: high transitional speed, acceleration, high control performance and good positioning at high speed. Through the omission of a power transfer element, the linear motor shows no wear and no backlash, has along lifetime and is easy to assemble. Recently, the two types of linear motors, asynchronous and synchronous linear motors, are often applied to machine tools as a fast feed mechanism. In this paper, a comparison between the two types of linear motors as to power loss and thermal behavior is made. The heat sources of the linear motor-the electrical power loss in the motor and the frictional heat on the linear guidance-are measured and compared. Also, the temperature on the linear motor and machine structure is measured and presented.

  • PDF

Improvement of the Thermal Characteristics of Synchronous Linear Motors through Structure Change (Synchronous Linear Motor의 구조변경에 의한 열특성에 개선)

  • 은인웅;이춘만;정원지;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.367-370
    • /
    • 1997
  • Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, the thermal behavior of a synchronous linear motor with high velocity and force is analyzed. To improve the thermal characteristics of the linear motor, structure of linear motor and cooler is changed. Some effects of an integrated cooler, an U-cooler and a thermal symmetrical cooler are presented.

  • PDF

Application of Electrical Linear Motors to Machine Tools (전기선형모터의 공작기계에의 적용)

  • 은인웅;정원지;이춘만;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.450-453
    • /
    • 2001
  • Linear motor is characterized by its high velocity, high acceleration and good positioning accuracy. In recent years, linear motor is often used as a fast feed mechanism for high-speed machine tools. For the effective application of linear motors to machine tools, many demands on machine conceptions must be fulfilled. In this paper, some important construction concepts such as bending deformation of machine table, frictional force on the linear guidance and thermal behavior of linear motors are presented.

  • PDF

Analysis of Heat and Vibration of Super-Precision Linear Motors (초정밀 선형 모터의 열$\cdot$진동 분석)

  • Lee Woo Young;Rim Kyung Hwa;Seol Jin Soo;Kim Hyun Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.1 s.10
    • /
    • pp.1-8
    • /
    • 2005
  • Linear motor can be directly applied to the system needed linear motions without rotary motions. To control high-speed and high-resolution, the development of the linear motors is recently required in the high-integrated and speed process industry This paper presents thermal and vibration analyses as well as measurement standards of the newly developed linear motors through analyzing the thermal behaviors and vibration characteristics of the advanced products. The thermal measurements are conducted for comparing the developed linear motor with the advanced linear motor and the Finite Volume Method(FVM) is used to identify the measurement results. And then the vibration measurement are carried out in the developed and advanced linear motors with respect to the speed. To identify the measurement results, the Finite Element Method is utilized in the developed and advanced linear motors, respectively. The FVM, FEM, and experiments make it possible to understand these characteristics. The improvement is suggested through their results conducted experiment and analyses.

  • PDF

Improvement of the Thermal Characteristics of Synchronous Linear Motors Through Insulation (단열에 의한 동기식 리니어모터의 열특성 향상)

  • Eun, In-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.123-130
    • /
    • 2002
  • Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, heat sources of a synchronous linear motor with high velocity and force measured and analyzed. To improve the thermal characteristics of the linear motor, an insulation layer with low thermal conductivity is inserted between cooler and machine table. Some effects of the insulation layer are presented.