• 제목/요약/키워드: Linear motion bearing

검색결과 88건 처리시간 0.031초

Seismic performance of R/C structures under vertical ground motion

  • Bas, Selcuk;Lee, Jong-Han;Sevinc, Mukadder;Kalkan, Ilker
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.369-380
    • /
    • 2017
  • The effects of the vertical component of a ground motion on the earthquake performances of semi-ductile high-rise R/C structures were investigated in the present study. Linear and non-linear time-history analyses were conducted on an existing in-service R/C building for the loading scenarios including and excluding the vertical component of the ground motion. The ratio of the vertical peak acceleration to the horizontal peak acceleration (V/H) of the ground motion was adopted as the main parameter of the study. Three different near-source earthquake records with varying V/H ratio were used in the analyses. The linear time-history analyses indicated that the incorporation of the vertical component of a ground motion into analyses greatly influences the vertical deflections of a structure and the overturning moments at its base. The lateral deflections, the angles of rotation and the base shear forces were influenced to a lesser extent. Considering the key indicators of vertical deflection and overturning moments determined from the linear time-history analysis, the non-linear analyses revealed that the changes in the forces and deformations of the structure with the inclusion of the vertical ground motion are resisted by the shear-walls. The performances and damage states of the beams were not affected by the vertical ground motion. The vertical ground motion component of earthquakes is markedly concluded to be considered for design and damage estimation of the vertical load-bearing elements of the shear-walls and columns.

Relationship between Oxidation and Wear of Ultra-High Molecular Weight Polyethylene for Total Joint Arthroplasty

  • Lee, Kwon-Yong
    • KSTLE International Journal
    • /
    • 제2권1호
    • /
    • pp.55-58
    • /
    • 2001
  • The most widely-used orthopaedic grade polymer bearing liner material, ultrahigh molecular weight polyethylene (UHMWPE), for the total joint arthroplasty degrades after gamma-irradiation sterilization through the progressive oxidation in a shelf and in vivo. Oxidative degradation makes UHMWPE brittle and leads to decrease in mechanical properties. In this study the relationship between post-gamma-irradiation aging time and wear of UHMWPE was investigated. Six retrieved polyethylene hip liners implanted for 3-16 years and then stored in air for 1.5-6.5 years until tests were used. Two types of pin-on-disk wear testing were conducted by the uni-directional repeat pass rotating and by the linear reciprocating stainless steel disks against stationary polyethylene pins under 4Mpa at 1Hz with bovine serum lubrication in ambient environment. Wear of retrieved polyethylene hip liners does not have direct correlation with in vivo or total aging time. Linear reciprocal sliding motion generated more remarkable wear than uni-directional repeat pass sliding motion. It indicates that kinematic motion affects very crucially on the wear of aged UHMWPE having brittle white band region.

  • PDF

공작기계 직선 베어링 안내면의 정도 설계에 관한 연구 (The Accuracy Design of LM Guide System in Machine Tools)

  • 김경호;박천홍;송창규;이후상;김승우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.692-695
    • /
    • 2000
  • This paper is concerned with Accuracy Design of LM Guide System in Machine Tools. Elastic deformation of bearing is calculated by Hertz contact theory and motion error of LM block is analyzed. A new algorithm using block stiffness is proposed fur the analysis of motion accuracy of the table. The best advantage of this algorithm is fast analysis speed because it isn't necessary iteration processes for satisfying equilibrium equation of the table. Motion errors of the table analyzed under artificial form error of rail theoretically and experimentally. Only one of two rails is bent by putting a thickness gauge into horizontal direction. This form error of rail is measured by gap sensor against the other rail. Then, motion errors of the table are predicted by proposed new algorithm theoretically and measured by laser interferometer. Measurements are carried out by changing the preload and thickness. The results show that the table motion errors are reduced from 1/2 to 1/60 times than form error of rail according to its height and width. And the effect of preloading is almost negligible.

  • PDF

열간 선재 압연기에서 작업롤 베어링의 외측링 파손에 관한 연구 (Study on Failure in Outer Ring of Work Roll Bearing in Hot Rod Rolling Mill)

  • 변상민
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.38-45
    • /
    • 2017
  • A finite element analysis-based approach which investigates the causes of the breakdown in the outer ring of the choke at hot rod rolling mill is presented. Two-dimensional drawings of the whole vertical-type mill stand are transformed into three-dimensional CAD models. Non-linear elasto-plastic deformation analysis of material at the roll gap is performed for computing roll force and torque of the work roll. Then, the reaction forces of the bearing rings together with a set of roller bearings that support the work roll are obtained by means of rigid body motion analysis. Finally, stress behaviors in the bearing rings together with a set of roller bearings that support the work roll are investigated by linear elastic analysis. Results reveal that stress at the contact area between the outer ring and roller bearing is extraordinary high when an internal gap between an external surface of the outer ring and the internal surface of the chock due to wear of the inside of the chock occurs.

Optimum design of lead-rubber bearing system with uncertainty parameters

  • Fan, Jian;Long, Xiaohong;Zhang, Yanping
    • Structural Engineering and Mechanics
    • /
    • 제56권6호
    • /
    • pp.959-982
    • /
    • 2015
  • In this study, a non-stationary random earthquake Clough-Penzien model is used to describe earthquake ground motion. Using stochastic direct integration in combination with an equivalent linear method, a solution is established to describe the non-stationary response of lead-rubber bearing (LRB) system to a stochastic earthquake. Two parameters are used to develop an optimization method for bearing design: the post-yielding stiffness and the normalized yield strength of the isolation bearing. Using the minimization of the maximum energy response level of the upper structure subjected to an earthquake as an objective function, and with the constraints that the bearing failure probability is no more than 5% and the second shape factor of the bearing is less than 5, a calculation method for the two optimal design parameters is presented. In this optimization process, the radial basis function (RBF) response surface was applied, instead of the implicit objective function and constraints, and a sequential quadratic programming (SQP) algorithm was used to solve the optimization problems. By considering the uncertainties of the structural parameters and seismic ground motion input parameters for the optimization of the bearing design, convex set models (such as the interval model and ellipsoidal model) are used to describe the uncertainty parameters. Subsequently, the optimal bearing design parameters were expanded at their median values into first-order Taylor series expansions, and then, the Lagrange multipliers method was used to determine the upper and lower boundaries of the parameters. Moreover, using a calculation example, the impacts of site soil parameters, such as input peak ground acceleration, bearing diameter and rubber shore hardness on the optimization parameters, are investigated.

초전도 자기베어링-플라이휠 시스템의 베어링 모델링 (Bearing Modeling of Superconducting Magnetic Bearings-Flywheel System)

  • 김정근;이수훈
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.891-898
    • /
    • 1999
  • The purpose of Superconducting Magnetic Bearing Flywheel Energy Storage System (SMB-FESS) is to store unused nighttime electricity until it is needed during daytime. An analytical model of the SMB-FESS is necessary to identify the system behavior. At first, we have to model the superconducting magnetic bearing. Modeling the SMB is same as estimating the bearing parameter. The theoretical modal parameter is calculated through the equation of motion and the experimental modal parameter is estimated through the impact testing (modal testing). The bearing parameter is searched by using the non-linear least square method until the theoretical result corresponds to the experimental result. The suggested modeling method is verified by comparing experimental and analytical frequency response function.

  • PDF

FEM을 이용한 유정압테이블의 운동정밀도 해석 (2. 양면지지형 테이블의 해석 및 실험적 검증) (Finite Element Analysis on the Motion Accuracy of Hydrostatic Table ($2^{nd}$. Analysis and Experimental Verification on Double Sides Table))

  • 박천홍;이후상;김태형;김민기
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.65-70
    • /
    • 2002
  • An analysis method for calculating motion accuarcy of double sides hydrostatic table is proposed in this paper. In this method, profiles of each rails are assumed as periodic function, therefore it is represented as the sum of spacial frequencies. Bearing clearance at any position rail is depended on the variation of linear, angular motion error of table and the form errors of both sides of a rail. Finite element method is applied to calculate pressure distributions in bearing clearance. In order to simplify the analyzing process, double sides table model is converted into equivalent single side table model. Results calculated by the proposed modeling method agree well with the results directly caculated by double sides modeling method, and also agree well with experimental results. From the theoretical and experimental analysis, it is verified that the proposed analysis method is very effective to analyze the motion accuracy of double sides hydrostatic table.

Dynamic Analysis of Sliders in Optical Memory System

  • Gyeong Hwa, Im;Chae Heon, An
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2003년도 추계학술대회 발표 논문집
    • /
    • pp.200-206
    • /
    • 2003
  • Identification method is formulated to evaluate the dynamic characteristics of air bearings under NFR (Near Field Recording) sliders. Using dynamic analysis, impulse responses and frequency response functions of NFR sliders are obtained on numerical non-linear models including rigid motion of slider and fluid motion of air bearing under the slider. System parameters are identified by modal analysis method and instrumental variable method. The identified system parameters of sliders are utilized to evaluate the dynamic characteristics of air bearings.

  • PDF