• Title/Summary/Keyword: Linear lens

Search Result 129, Processing Time 0.027 seconds

Design modification and structural behavior study of a CFRP star sensor baffle

  • Vinyas, M.;Vishwas, M.;Venkatesha, C.S.;Rao, G. Srinivasa
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.427-445
    • /
    • 2016
  • Star sensors are the attitude estimation sensors of the satellite orbiting in its path. It gives information to the control station on the earth about where the satellite is heading towards. It captures the images of a predetermined reference star. By comparing this image with that of the one captured from the earth, exact position of the satellite is determined. In the process of imaging, stray lights are eliminated from reaching the optic lens by the mechanical enclosures of the star sensors called Baffles. Research in space domain in the last few years is mainly focused on increased payload capacity and reduction in launch cost. In this paper, a star sensor baffle made of Aluminium is considered for the study. In order to minimize the component weight, material wastage and to improve the structural performance, an alternate material to Aluminium is investigated. Carbon Fiber Reinforced Polymer is found to be a better substitute in this regard. Design optimisation studies are carried out by adopting suitable design modifications like implementing an additional L-shaped flange, Upward flange projections, downward flange projections etc. A better configuration of the baffle, satisfying the design requirements and achieving manufacturing feasibility is attained. Geometrical modeling of the baffle is done by using UNIGRAPHICS-Nx7.5(R). Structural behavior of the baffle is analysed by FE analysis such as normal mode analysis, linear static analysis, and linear buckling analysis using MSC/PATRAN(R), MSC-NASTRAN(R) as the solver to validate the stiffness, strength and stability requirements respectively. Effect of the layup sequence and the fiber orientation angle of the composite layup on the stiffness are also studied.

A study of birefringence, residual stress and final shrinkage for precision injection molded parts

  • Yang, Sang-Sik;Kwon, Tai-Hun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.191-199
    • /
    • 2007
  • Precision injection molding process is of great importance since precision optical products such as CD, DVD and various lens are manufactured by those process. In such products, birefringence affects the optical performance while residual stress that determines the geometric precision level. Therefore, it is needed to study residual stress and birefringence that affect deformation and optical quality, respectively in precision optical product. In the present study, we tried to predict residual stress, final shrinkage and birefringence in injection molded parts in a systematic way, and compared numerical results with the corresponding experimental data. Residual stress and birefringence can be divided into two parts, namely flow induced and thermally induced portions. Flow induced birefringence is dominant during the flow, whereas thermally induced stress is much higher than flow induced one when amorphous polymer undergoes rapid cooling across the glass transition region. A numerical system that is able to predict birefringence, residual stress and final shrinkage in injection molding process has been developed using hybrid finite element-difference method for a general three dimensional thin part geometry. The present modeling attempts to integrate the analysis of the entire process consistently by assuming polymeric materials as nonlinear viscoelastic fluids above a no-flow temperature and as linear viscoelastic solids below the no-flow temperature, while calculating residual stress, shrinkage and birefringence accordingly. Thus, for flow induced ones, the Leonov model and stress-optical law are adopted, while the linear viscoelastic model, photoviscoelastic model and free volume theory taking into account the density relaxation phenomena are employed to predict thermally induced ones. Special cares are taken of the modeling of the lateral boundary condition which can consider product geometry, histories of pressure and residual stress. Deformations at and after ejection have been considered using thin shell viscoelastic finite element method. There were good correspondences between numerical results and experimental data if final shrinkage, residual stress and birefringence were compared.

New BLU Sheet with Linear Arrays of Deformed Bar Prism for Direct Back Light Unit (직하형 Back Light Unit에 사용하는 변형 막대프리즘의 1차원 배열로 구성한 새로운 BLU 필름)

  • Jang, Sun-Young;Jo, Jae-Heung;Baek, Seung-Sun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.401-409
    • /
    • 2007
  • A new sheet of back light unit(BLU) to reduce the number of sheets and enhance the optical performances of direct back light unit(BLU) in a liquid crystal display is proposed and designed. In order to improve the straightness and spatial uniformity of brightness of the BLU, we design the new sheet with linear arrays of complicated bar prism by using the fusion of cylindrical lens and bar prism. Then, we investigate and analyze various optical performances of a BLU including the new sheet through an illumination optical system design program. From these results, we determine the optimum geometrical structure of the sheet. Under the optimum condition, the luminance efficiency and spatial uniformity of luminance of the BLU are 53.5% and 83.5% respectively. And the vertical and horizontal widths of the angular luminance distribution are $90^{\circ}$ and $112.5^{\circ}$ respectively. Finally we have fabricated a new BLU sheet according to this design shape by using an ordinary resins.

Incase of Same Region Treatment by using a Tomotherapy and a Linear Accelerator Absorbed Dose Evaluation of Normal Tissues and a Tumor (토모테라피와 선형가속기를 이용한 동일 부위의 치료 시 종양 및 정상조직의 흡수선량 평가)

  • Cheon, Geum-Seong;Kim, Chang-Uk;Kim, Hoi-Nam;Heo, Gyeong-Hun;Song, Jin-Ho;Hong, Joo-Yeong;Jeong, Jae-Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.97-103
    • /
    • 2010
  • Purpose: Treating same region with different modalities there is a limit to evaluate the total absorbed dose of normal tissues. The reason is that it does not support to communication each modalities yet. In this article, it evaluates absorbed dose of the patients who had been treated same region by a tomotherapy and a linear accelerator. Materials and Methods: After reconstructing anatomic structure with a anthropomorphic phantom, administrate 45 Gy to a tumor in linac plan system as well as prescribe 15 Gy in tomotherapy plan system for make an ideal treatment plan. After the plan which made by tomoplan system transfers to the oncentra plan system for reproduce plan under the same condition and realize total treatment plan with summation 45 Gy linac treatment plan. To evaluate the absorbed dose of two different modalities, do a comparative study both a simple summation dose values and integration dose values. Then compare and analyze absorbed dose of normal tissues and a tumor with the patients who had been exposured radiation by above two differents modalities. Results: The result of compared data, in case of minimum dose, there are big different dose values in spleen (12.4%). On the other hand, in case of the maximum dose, it reports big different in a small bowel (10.2%) and a cord (5.8%) in head & neck cancer patients, there presents that oral (20.3%), right lens (7.7%) in minimum dose value. About maximum dose, it represents that spinal (22.5), brain stem (12%), optic chiasm (8.9%), Rt lens (11.5%), mandible (8.1%), pituitary gland (6.2%). In case of Rt abdominal cancer patients, there represents big different minimum dose as Lt kidney (20.3%), stomach (8.1%) about pelvic cancer patients, it reports there are big different in minimum dose as a bladder (15.2%) as well as big different value in maximum dose as a small bowel (5.6%), a bladder (5.5%) in addition, making treatment plan it is able us to get. Conclusion: In case of comparing both simple summation absorbed dose and integration absorbed dose, the minimum dose are represented higher as well as the maximum dose come out lower and the average dose are revealed similar with our expected values data. It is able to evaluate tumor & normal tissue absorbed dose which could had been not realized by treatment plan system. The DVH of interesting region are prescribed lower dose than expected. From now on, it needs to develop the new modality which are able to realize exact dose distribution as well as integration absorbed dose evaluation in same treatment region with different modalities.

  • PDF

Studies on the Millimeter-wave Passive Imaging Sensor (밀리미터파 수동 이미징 센서 연구)

  • Jung, Kyung-Kwon;Chae, Yeon-Sik;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • In this paper, we have designed a millimeter-wave passive imaging sensor that is able to use remote sensing and security applications. The brightness temperature distribution of a scene is measured with a antenna at an angular resolution of $3^{\circ}$. The sensor is controlled by a PC, achieving a fast performance by using a pan/tilter. The pan/tilter should be able to scan a 2-D image of the scene, with a linear raster scan pattern. The mechanical scans in azimuth and elevation whereby an image of $20{\times}20$ pixels is acquired within less than 400s. Raw images are immediately displayed and stored for postprocessing.

A Study on the Control Method for the Tool Path of Aspherical Surface Grinding and Polishing (비구면 연삭 및 연마를 위한 공구 경로 제어에 관한 연구)

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.113-120
    • /
    • 2006
  • This paper proposed the control algorithm fur aspheric surface grinding and was verified by the experiment. The functions of the algorithm were simultaneous control of the position and interpolation of the aspheric curve. The non-linear formula of the tool position was derived from the aspheric equations and the shape of the tool. The function was partitioned by an certain interval and the control parameters were calculated at each control section. The movement in a session was interpolated with acceleration and velocity. The position error was feed-backed by rotary encorder. The concept of feedback algorithm was correcting position error by increasing or decreasing the speed. In the experiment, two-axis machine was controlled to track the aspheric surface by the proposed algorithm. The effect of the control and process parameters was monitored. The result showed that the maximum tracking error was under sub-micro level for the concave and convex surfaces.

Evaluation of Dose Distribution of 6 MV X-ray using Optical Dosimetry (광 도시메트리시스템을 이용한 치료용 6 MV X선 선량분포 평가)

  • Kim, Sunghwan
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.925-932
    • /
    • 2019
  • In this paper, we developed optical dosimetry system with a plastic scintillator, a commercial 50 mm, f1.8 lens, and a commercial high-sensitivity CMOS (complementary metal-oxide semiconductor) camera. And, the correction processors of vignetting, geometrical distortion and scaling were established. Using the developed system, we can measured a percent depth dose, a beam profile and a dose linearity for 6 MV medical LINAC (Linear Accelerator). As results, the optically measured percent depth dose was well matched with the measured percent depth dose by ion-chamber within 2% tolerance. And the determined flatness was 2.8%. We concluded that the optical dosimetry system was sufficient for application of absorbed dose monitoring during radiation therapy.

Panoramic Image Reconstruction using Forward Warping and Bilinear Interpolation Method (Forward Warping과 양선형 보간법을 이용한 파노라마 영상 재구성)

  • Park, Chang-Hil;Shin, Sung-Min;Woo, Young-Woon;Kim, Kwang-Beak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.65-68
    • /
    • 2011
  • 도시의 방범 대책의 일환으로 거리감시 카메라의 설치가 진행되고 있다. 이때 가능하면 넓은 범위를 포함하고, 사각을 없애기 위해 다수의 카메라가 필요하기 때문에 기기 도입에 많은 비용이 발생하게 된다. 또한 카메라에 모터를 장착하여, 상하 좌우로 움직이는 기계적인 장치를 추가하여, 기기의 대수를 줄이는 경우에도 많은 유지 보수비용이 필요하다. 그러나 360도를 관찰할 수 있는 어안렌즈 카메라를 이용하면 다수의 카메라 대신 한 대의 카메라로 대응할 수 있어 유지보수 비용을 절약할 수 있다. 그러나 어안 렌즈를 이용할 경우에는 영상이 굴절되어 보이기 때문에 감시 카메라용 렌즈로써는 부적합하다. 따라서 본 논문에서는 굴곡 되어 있는 영상의 개선을 위하여 Forward Warping을 이용하여 파노라마 영상으로 변환하고 파노라마 영상으로 변환 중에 손실되는 영상 정보를 복원하기 위하여 양선형 보간법을 적용하여 개선된 파노라마 영상을 얻을 수 있는 방법을 제안한다. 본 논문에서 제안한 어안 렌즈 영상 재구성 방법의 성능을 평가하기 위하여 다양한 어안 렌즈 영상을 대상으로 실험한 결과, 기존의 방법보다 영상을 재구성하는데 효과적인 것을 확인하였다.

  • PDF

VLSI Implementation of Adaptive Shading Correction System Supporting Multi-Resolution for Mobile Camera

  • Ha, Joo-Young;Lee, Sung-Mok;Jang, Won-Woo;Yang, Hoon-Gee;Kang, Bong-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1201-1207
    • /
    • 2006
  • In this paper, we say the adaptive shading correction system supporting multi-resolution for mobile camera. The shading effect is caused by non-uniform illumination, non-uniform camera sensitivity, or even dirt and dust on glass (lens) surfaces. In general this shading effect is undesirable [1-3]. Eliminating it is frequently necessary for subsequent processing and especially when quantitative microscopy is the fine goal. The proposed system is available on thirty nine kinds of image resolutions scanned by interlaced and progressive type. Moreover, the system is using forty kinds of continuous quadratic equations instead of using the piece-wise linear curve which is composed of multiple line segments. Finally, the system could correct the shading effect without discontinuity in any image resolution. The proposed system is implemented in VLSI with cell library based on Hynix $0.25{\mu}m$ CMOS technology.

Manufacturing of PAR Illumination Using COB Line Type LEDs (COB Line형 LED를 사용한 PAR 조명의 제작)

  • Youn, Gap-Suck;Yoo, Kyung-Sun;Lee, Chang-Soo;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.448-454
    • /
    • 2015
  • In this paper, the band structural design that is typically in a line was arranged in a ring shape, so as to configure the high power LED lighting in such a way as to form a concentrated light distribution angle of less than 15 degrees. The parabolic aluminized reflector PAR38 that facilitates design using area and the area of the optical system to the same extent, applied a multiple light-source condenser lens optical system for the control of integration. The LED used here implemented a single linear light source using ans LED module with ans LED, flip-chip chip-scale package. The optical system was designed based on the energy star standard.