• Title/Summary/Keyword: Linear ion source

Search Result 56, Processing Time 0.023 seconds

IMRT and IMRS Checking the Dose Distribution in the Small Field Evaluation of Measurement by Changes in SAD (IMRT 및 IMRS에서 Small Field의 선량분포 확인시 SAD 변화에 따른 측정의 유용성 평가)

  • Ko, Seung-Young;Kim, Sung-Joon;Park, Gir-Yong;Son, Mi-Suk;Lee, Nam-Ki;Kim, Jin-Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • Purpose: It is very important to confirm conformance of dose distribution that is formed with treatment planning from IMRS or IMRT. It has been a problem dropped accuracy and conformance when the field size is getting smaller because of character of the 2D ion chamber. Verification of MatriXX Phantom dose distribution with a change in the SAD. Dose distribution measurement and analysis to improve the accuracy and should be useful to evaluate the award. Materials and Methods: A use of Novalis linear accelerator 6 MV photon beams. In general, IMRS were 25 patients with small field size. The selected patients were divided into three groups on the basis of the field size. SAD was changed from 80 to 130 cm and field size to determine the dose distribution to the change, each dose was measured using MatriXX Phantom. Analysis of measured values obtained from the program for each patient through the treatment planning system comparison and analysis of the dose distribution and gamma values were expressed. Result: SAD 80, 100, and 120 cm in size in the gamma value to the investigation of patients less than $3\;cm^2$ average 0.939, 0.969, and 0.979, respectively. Patients with more than $5\;cm^2$ 0.962, 0.983, and 0.988, respectively. $5\;cm^2$ or more patients 0.982, 0.990, and 0.992, respectively. Conclusion: The error rate of less than $3\;cm^2$ field size is increased rapidly. If the field size is increased, resolution is increased by 2D ion chambers. It has been approved that it can be credible if it is around $3\;cm^2$ when measuring dose distribution using MatriXX. Adjusting geometric field size by changing SAD is likely to be very useful when you measure dose distribution using MatriXX.

  • PDF

Composition and Neutralization Characteristics of Precipitation at the Anmyeon-do and Gosan GAW Stations from 2008 to 2017 (안면도와 고산 기후변화감시소에서 채취한 강수 성분의 조성 및 중화 특성(2008~2017년))

  • Ko, Hee-Jung;Jeong, Jiyoung;Kim, Eun-Sil;Lee, Sang-Sam;Ryoo, Sang-Boom
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.403-416
    • /
    • 2019
  • Precipitation samples were collected at the GAW Stations in Anmyeon-do and Gosan for 10 years (2008-2017) to analyze pH, electrical conductivity and NH4+, Na+, K+, Mg2+, Ca2+, SO42-, NO3-, Cl-, and F- ions. From the analysis, the correlation between pH and rainfall, the composition of precipitation and comparison with other regions, and the results of neutralization characteristics by seasonal and pH were determined. In the comparison of ion balance and conductivity for the validation of analytical data, the correlation coefficients were within the range of 0.996~0.999, implying good linear relationship. The volume-weighted pH of the Anmyeon-do and Gosan areas were 4.7 and 4.9, respectively. The pH of the rainfall was affected by washout and rainout in both areas. The ionic strength of precipitation at Anmyeondo and Gosan were 0.42 ± 0.63 mM and 0.37 ± 0.75 mM, indicating about 27.6% and 35.3% of the total precipitation as per a pure precipitation criterion (10-4 M), respectively. The composition ratio of ionic species were 44.7% and 57.5% for marine sources (Na+, Mg2+, Cl-), 40.6% and 22.2% for the secondary inorganic components (NH4+, nss-SO42-, NO3-), and 5.6% and 4.0% for the soil source (nss-Ca2+), respectively. The neutralization factor of Anmyeon-do and Gosan were 0.43~0.65 and 0.34~0.48, and the neutralization factors of calcium carbonate were 0.15~0.34 and 0.25~0.30, respectively. Thus, both regions have the highest rate of neutralization caused by ammonia. As pH increased in Anmyeon-do and Gosan, change in calcium carbonate became greater than that in ammonia.

Pollution Characteristics of Rainwater at Jeju Island during 2009~2010 (2009~2010년 제주지역 강우의 오염 특성 연구)

  • Kim, Ki-Ju;Bu, Jun-Oh;Kim, Won-Hyung;Lee, Yoon-Sang;Hyeon, Dong-Rim;Kang, Chang-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.818-829
    • /
    • 2013
  • The collection of rainwater samples was made at Jeju area during 2009~2010, and the major ionic species were analyzed. In the comparison of ion balance, conductivity, and acid fraction for the validation of analytical data, the correlation coefficients showed a good linear relationship within the range of 0.966~0.990. The volume-weighted mean pH and electric conductivity were 4.9 and $17.8{\mu}S/cm$, respectively, at the Jeju area. The volume-weighted mean concentrations of ionic species in rainwater were in the order of $Cl^-$ > $Na^+$ > $nss-SO_4{^{2-}}$ > $NH_4{^+}$ > $NO_3{^-}$ > $Mg^{2+}$ > $H^+$ > $nss-Ca^{2+}$ > $HCOO^-$ > $K^+$ > $PO_4{^{3-}}$ > $CH_3COO^-$ > $NO_2{^-}$ > $F^-$ > $HCO_3{^-}$ > $CH_3SO_3{^-}$. The ionic strength of rainwater was $0.26{\pm}0.21$ mM during the study period. The composition ratios of ionic species were such as 50.1% for the marine sources ($Na^+$, $Mg^{2+}$, $Cl^-$), 30.9% for the anthropogenic sources ($NH_4{^+}$, $nss-SO_4{^{2-}}$, $NO_3{^-}$), and 4.7% for the soil source ($nss-Ca^{2+}$), and 3.1% for organic acids ($HCOO^-$, $CH_3COO^-$). From the seasonal comparison, the concentrations of $NO_3{^-}$, $nss-Ca^{2+}$, and $nss-SO_4{^{2-}}$ increased in winter and spring seasons, indicating a reasonable possibility of long range transport from Asia continent. Especially, the acidifying contributions by major inorganic acids ($nss-SO_4{^{2-}}$ and $NO_3{^-}$) and organic acids ($HCOO^-$ and $CH_3COO^-$) were 87.6% and 12.4%, respectively. In comparison by sectional inflow pathway of air mass during the rainy sampling days, the concentrations of $nss-SO_4{^{2-}}$ and $NO_3{^-}$ were relatively high when the air mass was moved from the China continent into Jeju area.

A Study of Peripheral Doses for Physical Wedge and Dynamic Wedge (고정형쐐기(Physical Wedge)와 동적쐐기(Dynamic Wedge)의 조사야 주변 선량에 관한 연구)

  • Min, Je-Soon;Na, Kyung-Soo;Lee, Je-Hee;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.77-82
    • /
    • 2007
  • Purpose: This study investigates peripheral dose from physical wedge and dynamic wedge system on a multileaf collimator (MLC) equipment linear accelerator. Materials and Methods: Measurments were performed using a 2D array ion chamber and solid water phantom for a 10$\times$10 cm, source-surface distance (SSD) 90 cm, 6 and 15 MV photon beam at depths of 0.5 cm, 5 cm through dmax. Measurments of peripheral dose at 0.5 cm and 5 cm depths were performed from 1 cm to 5 cm outside of fields for the dynamic wedge and physical wedge 15$^\circ$, 45$^\circ$. Dose profiles normalized to dose at the maximum depth. Results: At 6 MV photon beam, the average peripheral dose of dynamic wedge were lower by 1.4% and 0.1%. At 15 MV photon beam, the peripheral dose of dynamic wedge were lower by maximum 1.6%. Conclusion: This study showed that dynamic wedge can reduce scattered dose of clinical organ close to the field edge and reduced treatment time. The wedge systems produce significantly different peripheral dose that should be considered in properly choosing a wedge system for clinical use.

  • PDF

Development of EPICS-IOC Measuring Magnetic Field at A/Q separator for Separating Specific Ions (가속이온 분리를 위한 A/Q Separator에서 자장측정용 EPICS-IOC 개발)

  • Lee, Su-Yeong;Yim, Hee-Joong;Kim, Jae-Hong;Mun, Jun-Yeong;Park, Mi-Jeong;Lee, Sang-Il;Lee, Dong-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • The installation and performance test of the ISOL (Isotope Separation On Line) system for the generation and separation of Rare Isotopes (RI) beams is in progress at the Rare Isotope Science Project (RISP), Institute for Basic Science (IBS). The various RI beams generated by the ISOL target/ion source go through the beam lines and separators, and only the RI beam desired by the user is selected and transmitted to the superconducting linear accelerator at the downstream of the ISOL. In the ISOL system, two separators are installed to separate a specific RI beam, and control is performed by the Experimental Physics and Industrial Control System (EPICS). In this study, an EPICS IOC (Input-Output Control) was developed to measure the magnetic field of a dipole magnet for mass separation of a multivalent (n+) RI beam in the A/Q separator, which is one of the ISOL RI beam separators. The operational stability of the A/Q separator was tested through a magnetic field measurement using a Hall probe.

Characterization of Concentrations of Fine Particulate Matter in the Atmosphere of Pohang Area (포항지역 대기 중 초미세먼지(PM$_{2.5}$)의 오염특성평가)

  • Baek, Sung-Ok;Heo, Yoon-Kyeung;Park, Young-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.302-313
    • /
    • 2008
  • The purposes of this study are to investigate the concentration levels of fine particles, so called PM$_{2.5}$, to identify the affecting sources, and to estimate quantitatively the source contributions of PM$_{2.5}$. Ambient air sampling was seasonally carried out at two sites in Pohang(a residential and an industrial area) during the period of March to December 2003. PM$_{2.5}$ samples were collected by high volume air samplers with a PM$_{10}$ Inlet and an impactor for particle size segregation, and then determined by gravimetric method. The chemical species associated with PM$_{2.5}$ were analyzed by inductively coupled plasma spectrophotometery(ICP) and ion chromatography(IC). The results showed that the most significant season for PM$_{2.5}$ mass concentrations appeared to be spring, followed by winter, fall, and summer. The annual mean concentrations of PM$_{2.5}$ were 36.6 $\mu$g/m$^3$ in the industrial and 30.6 $\mu$g/m$^3$ in the residential area, respectively. The major components associated with PM$_{2.5}$ were the secondary aerosols such as nitrates and sulfates, which were respectively 4.2 and 8.6 $\mu$g/m$^3$ in the industrial area and 3.7 and 6.9 $\mu$g/m$^3$ in the residential area. The concentrations of chemical component in relation to natural emission sources such as Al, Ca, Mg, K were generally higher at both sampling sites than other sources. However, the concentrations of Fe, Mn, Cr in the industrial area were higher than those in the residential area. Based on the principal component analysis and stepwise multiple linear regression analysis for both areas, it was found that soil/road dust and secondary aerosols are the most significant factors affecting the variations of PM$_{2.5}$ in the ambient air of Pohang. The source apportionments of PM$_{2.5}$ were conducted by chemical mass balance(CMB) modeling. The contributions of PM$_{2.5}$ emission sources were estimated using the CMB8.0 receptor model, resulting that soil/road dust was the major contributor to PM$_{2.5}$, followed by secondary aerosols, vehicle emissions, marine aerosols, metallurgy industry. Finally, the application and its limitations of chemical mass balance modeling for PM$_{2.5}$ was discussed.