• Title/Summary/Keyword: Linear impact

Search Result 982, Processing Time 0.029 seconds

Particle-based Numerical Modeling of Linear Viscoelastic Materials using MPM based on FEM for Taylor Impact Simulations

  • Kim, See Jo
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.207-212
    • /
    • 2018
  • Taylor rod impact tests have been the subject of many theoretical and experimental investigations. This paper discusses the numerical methods for simulating the Taylor impact test, which is widely used to obtain constitutive equations and failure conditions under high-velocity collisions of materials. With this in mind, a particle-based MPM (material point method) for linear viscoelastic solid materials was implemented, and MPM simulations for viscoelastic deformation behavior were numerically verified and confirmed by comparing the MPM and FEM results. In addition, this modeling and numerical approach could be extended to more complex viscoelastic models for basic understanding and to analyze the deformation and fracture behavior of more complicated viscoelastic material systems.

Impact of Hand-Held Technology for Understanding Linear Equations and Graphs

  • Kwon, Oh-Nam
    • Research in Mathematical Education
    • /
    • v.6 no.1
    • /
    • pp.81-96
    • /
    • 2002
  • This article describes a research project that examined the impact of hand-held technology on students' understanding linear equations and graphs in multiple representations. The results indicated that students in the graphing-approach classes were significantly better at the components of interpreting. No significant differences between the graphing-approach and traditional classes were found fur translation, modeling, and algebraic skills. Further, students in the graphing-approach classes showed significant improvements in their attitudes toward mathematics and technology, were less anxious about mathematics, and rated their class as more interesting and valuable.

  • PDF

The extension of the largest generalized-eigenvalue based distance metric Dij1) in arbitrary feature spaces to classify composite data points

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • v.17 no.4
    • /
    • pp.39.1-39.20
    • /
    • 2019
  • Analyzing patterns in data points embedded in linear and non-linear feature spaces is considered as one of the common research problems among different research areas, for example: data mining, machine learning, pattern recognition, and multivariate analysis. In this paper, data points are heterogeneous sets of biosequences (composite data points). A composite data point is a set of ordinary data points (e.g., set of feature vectors). We theoretically extend the derivation of the largest generalized eigenvalue-based distance metric Dij1) in any linear and non-linear feature spaces. We prove that Dij1) is a metric under any linear and non-linear feature transformation function. We show the sufficiency and efficiency of using the decision rule $\bar{{\delta}}_{{\Xi}i}$(i.e., mean of Dij1)) in classification of heterogeneous sets of biosequences compared with the decision rules min𝚵iand median𝚵i. We analyze the impact of linear and non-linear transformation functions on classifying/clustering collections of heterogeneous sets of biosequences. The impact of the length of a sequence in a heterogeneous sequence-set generated by simulation on the classification and clustering results in linear and non-linear feature spaces is empirically shown in this paper. We propose a new concept: the limiting dispersion map of the existing clusters in heterogeneous sets of biosequences embedded in linear and nonlinear feature spaces, which is based on the limiting distribution of nucleotide compositions estimated from real data sets. Finally, the empirical conclusions and the scientific evidences are deduced from the experiments to support the theoretical side stated in this paper.

Estimation of Subjective Evaluations for Impact Sound and Analysis of the Effects for Parts of a Car (자동차 임팩트 소음에 대한 주관적 평가 및 차량 개발에 응용)

  • Park, Sang-Won;Lee, Sang-Kwon;Bae, Byung-Kuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.37-44
    • /
    • 2010
  • Impact noise is induced in a car when it is driven on a harsh road or over some bumps. This noise occurs with the very high level of sound, which affects passengers in some way or other. Although it is impossible to clearly remove such noise, it is necessary to research an improvement in sound quality for impact noise. A new sound metric for impact sound is presented. This metric is verified by comparison between mean subjective ratings and several sound metrics. In this paper, more objective attributes are considered, which the attributes are expressing the level and modulation of sound. Three sound metrics are employed to get impact sound indexes for each course by the method of multiple linear regressions. The indexes are verified by considering the correlation between the estimated values from the multiple linear regressions and the mean subjective ratings by evaluators. Also, the subjective ratings on the indexes are estimated for the case in which some parts of suspension system are changed. The estimated ratings represent more reasonable or acceptable ratings. Thus, such indexes can be used for modification of the parts of suspension system under considering a good sound quality.

Studies on vibration control effects of a semi-active impact damper for seismically excited nonlinear building

  • Lu, Zheng;Zhang, Hengrui;Masri, Sami F.
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.95-110
    • /
    • 2019
  • The semi-active impact damper (SAID) is proposed to improve the damping efficiency of traditional passive impact dampers. In order to investigate its damping mechanism and vibration control effects on realistic engineering structures, a 20-story nonlinear benchmark building is used as the main structure. The studies on system parameters, including the mass ratio, damping ratio, rigid coefficient, and the intensity of excitation are carried out, and their effects both on linear and nonlinear indexes are evaluated. The damping mechanism is herein further investigated and some suggestions for the design in high-rise buildings are also proposed. To validate the superiority of SAID, an optimal passive particle impact damper ($PID_{opt}$) is also investigated as a control group, in which the parameters of the SAID remain the same, and the optimal parameters of the $PID_{opt}$ are designed by differential evolution algorithm based on a reduced-order model. The numerical simulation shows that the SAID has better control effects than that of the optimized passive particle impact damper, not only for linear indexes (e.g., root mean square response), but also for nonlinear indexes (e.g., component energy consumption and hinge joint curvature).

Preliminary Ecological Environmental Assessments of a Brooklet in Jeungchon (증촌 도랑의 생태환경 조사와 평가)

  • Han, Jeong-Ho;An, Kwang-Guk
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.6
    • /
    • pp.841-857
    • /
    • 2012
  • Preliminary ecological environmental assessments including physico-chemical constituents, water quality, fish fauna analysis, physical habitat health, and ecological health assessment were conducted as a primary step for Jeungchon micro-habitat ecosystem restoration in 2012. Water chemistry analysis of conductivity, dissolved oxygen, chlorophyll-a and etc. indicated that there were no significant differences(p < 0.05) among 6 sites between the headwaters and downstream. Multi-metric model analysis of Qualitative Habitat Evaluation Index(QHEI) showed that brooklets were at "good condition" as a mean QHEI of 158.7(n = 6) and the longitudinal differences of the model values between the sites were minor(QHEI range: 153 - 165). Total fish species and the number of individuals were 12 and 481, respectively, and dominant species were Zacco platypus(49.5%) and Zacco koreanus(36.8%). Tolerance guild analysis showed that the proportion of sensitive species($S_S$) had a negative linear function[$S_S=86.35-0.31(D_H)$; $R^2$ = 0.892, p < 0.01] with a distance from the headwaters, while the proportion of tolerant species($T_S$) had a positive linear function($R^2$ = 0.950, F = 90.28, p < 0.001) with the distance. Trophic feeding guild analysis showed that the proportion of insectivore species($I_n$) had a negative linear function($R^2$ = 0.934, p < 0.01) with a distance from the headwaters, while the proportion of omnivore species($O_m$) had a positive linear function($R^2$ = 0.958, p < 0.001) with the distance. Index of Biological Integrity(IBI) model, based on fish assemblages, showed a "fair condition" as a mean IBI of 23(n = 6), and there was a distinct differences of ecological health between the headwaters(S1 = 30; "good condition") and the downstreams(S6 = 14; "poor condition"). Overall, the preliminary environmental impact assessments suggest that water quality, physical habitat conditions(QHEI model), and ecological health(IBI model) were maintained well, even if the state was not an excellent conditions.

Evaluation of the Impact Force on the Vertically Placed Force Platform (지면반력 측정기 수직 설치 시 충격력 검증)

  • Choi, Chi-Sun;Shin, In-Sik;Seo, Jung-Suk
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.57-68
    • /
    • 2004
  • This study was to evaluate the consistency of the vertical force($F_z$) of the force platform and the impact force. Two experiments were performed. First, the force platform was vertically placed to hang to the wall. While the rotating iron body hit the force platform, $F_z$ was measured. Then $F_z$ was compared with the impact force of the rotating iron body that was precalculated by using the inertia moments and the rotating force. Second, six Taekwondo masters punched the force platform to show what a certain pattern the impart force has. They were asked to punch the target depending on target distances. The target distances were differed from the relative arm segment of subjects as 90%, 80%, 70%, 60%, and 50% (100% target distance equals the aim length of each subject). Pearson's correlations were used between $F_z$ and the impact force. Also the linear regression was also performed to show the linearity. At the first experiment, $F_z$ and the impact force had much correlations and showed linear characteristics. Therefore, $F_z$ could be regarded as the impact force. At the second experiment, the strongest impact force was measured at the target distance of 80% and the time taken to the maximum impact force was within 0.02 seconds. The result of this study recommends that it can help the comparative study between the impact forces and other hitting sports.

Linear viscoelastic behavior of acrylonitrile-butadiene-styrene(ABS) polymers in the melt: Interpretation of data with a linear viscoelastic model of matrix/core-shell modifier polymer blends

  • Park, Joong-Hwan;Ryu, Jong-Hoon;Kim, Sang-Yong
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.2
    • /
    • pp.135-141
    • /
    • 2000
  • The linear viscoelastic behavior of acrylonitrile-butadiene-styrene (ABS) polymers with different rubber content has been investigated in the frame of a linear viscoelastic model, which takes into account the inter-connectivity of the dispersed rubber particles. The model developed in our previous work has been shown to properly predict the low frequency plateau for the storage modulus, which is generally observed in polymer blends containing core-shell-type impact modifiers. In the present study, further experiments have been carried out on ABS polymers with different rubber content to verify the validity of our linear viscoelastic model. It has been found that our model describes quite properly the rheological behavior of ABS polymers with different rubber content, especially at low frequencies. The experimental data confirm that our model describes the rheological properties of rubber-modified thermoplastic polymers with strong adhesion at the particle/matrix interface more accurately than the Palierne model.

  • PDF

Performance and modeling of high-performance steel fiber reinforced concrete under impact loads

  • Perumal, Ramadoss
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.255-270
    • /
    • 2014
  • Impact performance of high-performance concrete (HPC) and SFRC at 28-day and 56-day under the action of repeated dynamic loading was studied. Silica fume replacement at 10% and 15% by mass and crimped steel fiber ($V_f$ = 0.5%- 1.5%) with aspect ratios of 80 and 53 were used in the concrete mixes. Results indicated that addition of fibers in HPC can effectively restrain the initiation and propagation of cracks under stress, and enhance the impact strengths and toughness of HPC. Variation of fiber aspect ratio has minor effect on improvement in impact strength. Based on the experimental data, failure resistance prediction models were developed with correlation coefficient (R) = 0.96 and the estimated absolute variation is 1.82% and on validation, the integral absolute error (IAE) determined is 10.49%. On analyzing the data collected, linear relationship for the prediction of failure resistance with R= 0.99 was obtained. IAE value of 10.26% for the model indicates better the reliability of model. Multiple linear regression model was developed to predict the ultimate failure resistance with multiple R= 0.96 and absolute variation obtained is 4.9%.

The Characteristics of Heavy-weight Impact Sound and Vibration According to the Change of Impact Force in An Apartment Building (충격력 변화에 따른 공동주택의 중량 충격음 및 진동 특성)

  • 서상호;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.304-307
    • /
    • 2004
  • To reduce the structure-born sound by floor impact source in an apartment building, it is necessary to identify the relationship between floor impact sound and vibration. Various impact sources which were made by a bang machine and an impact ball were used for measurement of impact sound and vibration. The experimental results show that the linear relationship between floor impact sound and vibration was in existence despite of various floor impact sources.

  • PDF