• Title/Summary/Keyword: Linear feature analysis

Search Result 325, Processing Time 0.029 seconds

Seabed Sediment Feature Extraction Algorithm using Attenuation Coefficient Variation According to Frequency (주파수에 따른 감쇠계수 변화량을 이용한 해저 퇴적물 특징 추출 알고리즘)

  • Lee, Kibae;Kim, Juho;Lee, Chong Hyun;Bae, Jinho;Lee, Jaeil;Cho, Jung Hong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.111-120
    • /
    • 2017
  • In this paper, we propose novel feature extraction algorithm for classification of seabed sediment. In previous researches, acoustic reflection coefficient has been used to classify seabed sediments, which is constant in terms of frequency. However, attenuation of seabed sediment is a function of frequency and is highly influenced by sediment types in general. Hence, we developed a feature vector by using attenuation variation with respect to frequency. The attenuation variation is obtained by using reflected signal from the second sediment layer, which is generated by broadband chirp. The proposed feature vector has advantage in number of dimensions to classify the seabed sediment over the classical scalar feature (reflection coefficient). To compare the proposed feature with the classical scalar feature, dimension of proposed feature vector is reduced by using linear discriminant analysis (LDA). Synthesised acoustic amplitudes reflected by seabed sediments are generated by using Biot model and the performance of proposed feature is evaluated by using Fisher scoring and classification accuracy computed by maximum likelihood decision (MLD). As a result, the proposed feature shows higher discrimination performance and more robustness against measurement errors than that of classical feature.

Robust Feature Parameter for Implementation of Speech Recognizer Using Support Vector Machines (SVM음성인식기 구현을 위한 강인한 특징 파라메터)

  • 김창근;박정원;허강인
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.195-200
    • /
    • 2004
  • In this paper we propose effective speech recognizer through two recognition experiments. In general, SVM is classification method which classify two class set by finding voluntary nonlinear boundary in vector space and possesses high classification performance under few training data number. In this paper we compare recognition performance of HMM and SVM at training data number and investigate recognition performance of each feature parameter while changing feature space of MFCC using Independent Component Analysis(ICA) and Principal Component Analysis(PCA). As a result of experiment, recognition performance of SVM is better than 1:.um under few training data number, and feature parameter by ICA showed the highest recognition performance because of superior linear classification.

The Enhanced Power Analysis Using Linear Discriminant Analysis (선형판별분석을 이용한 전력분석 기법의 성능 향상)

  • Kang, Ji-Su;Kim, HeeSeok;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.6
    • /
    • pp.1055-1063
    • /
    • 2014
  • Recently, various methods have been proposed for improving the performance of the side channel analysis using the power consumption. Of those method, waveform compression method applies to reduce the noise component in pre-processing step. In this paper, we propose the new LDA(Linear Discriminant Analysis)-based signal compression method finding unique feature vector. Through experimentations, we are comparing the proposed method with the PCA(Principal Component Analysis)-based method which has known for the best performance among existing signal compression methods.

Sonar Target Classification using Generalized Discriminant Analysis (일반화된 판별분석 기법을 이용한 능동소나 표적 식별)

  • Kim, Dong-wook;Kim, Tae-hwan;Seok, Jong-won;Bae, Keun-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.125-130
    • /
    • 2018
  • Linear discriminant analysis is a statistical analysis method that is generally used for dimensionality reduction of the feature vectors or for class classification. However, in the case of a data set that cannot be linearly separated, it is possible to make a linear separation by mapping a feature vector into a higher dimensional space using a nonlinear function. This method is called generalized discriminant analysis or kernel discriminant analysis. In this paper, we carried out target classification experiments with active sonar target signals available on the Internet using both liner discriminant and generalized discriminant analysis methods. Experimental results are analyzed and compared with discussions. For 104 test data, LDA method has shown correct recognition rate of 73.08%, however, GDA method achieved 95.19% that is also better than the conventional MLP or kernel-based SVM.

Multimodal Biometric Using a Hierarchical Fusion of a Person's Face, Voice, and Online Signature

  • Elmir, Youssef;Elberrichi, Zakaria;Adjoudj, Reda
    • Journal of Information Processing Systems
    • /
    • v.10 no.4
    • /
    • pp.555-567
    • /
    • 2014
  • Biometric performance improvement is a challenging task. In this paper, a hierarchical strategy fusion based on multimodal biometric system is presented. This strategy relies on a combination of several biometric traits using a multi-level biometric fusion hierarchy. The multi-level biometric fusion includes a pre-classification fusion with optimal feature selection and a post-classification fusion that is based on the similarity of the maximum of matching scores. The proposed solution enhances biometric recognition performances based on suitable feature selection and reduction, such as principal component analysis (PCA) and linear discriminant analysis (LDA), as much as not all of the feature vectors components support the performance improvement degree.

A Study on Detection and Recognition of Facial Area Using Linear Discriminant Analysis

  • Kim, Seung-Jae
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.40-49
    • /
    • 2018
  • We propose a more stable robust recognition algorithm which detects faces reliably even in cases where there are changes in lighting and angle of view, as well it satisfies efficiency in calculation and detection performance. We propose detects the face area alone after normalization through pre-processing and obtains a feature vector using (PCA). The feature vector is applied to LDA and using Euclidean distance of intra-class variance and inter class variance in the 2nd dimension, the final analysis and matching is performed. Experimental results show that the proposed method has a wider distribution when the input image is rotated $45^{\circ}$ left / right. We can improve the recognition rate by applying this feature value to a single algorithm and complex algorithm, and it is possible to recognize in real time because it does not require much calculation amount due to dimensional reduction.

Face Recognition Based on Facial Landmark Feature Descriptor in Unconstrained Environments (비제약적 환경에서 얼굴 주요위치 특징 서술자 기반의 얼굴인식)

  • Kim, Daeok;Hong, Jongkwang;Byun, Hyeran
    • Journal of KIISE
    • /
    • v.41 no.9
    • /
    • pp.666-673
    • /
    • 2014
  • This paper proposes a scalable face recognition method for unconstrained face databases, and shows a simple experimental result. Existing face recognition research usually has focused on improving the recognition rate in a constrained environment where illumination, face alignment, facial expression, and background is controlled. Therefore, it cannot be applied in unconstrained face databases. The proposed system is face feature extraction algorithm for unconstrained face recognition. First of all, we extract the area that represent the important features(landmarks) in the face, like the eyes, nose, and mouth. Each landmark is represented by a high-dimensional LBP(Local Binary Pattern) histogram feature vector. The multi-scale LBP histogram vector corresponding to a single landmark, becomes a low-dimensional face feature vector through the feature reduction process, PCA(Principal Component Analysis) and LDA(Linear Discriminant Analysis). We use the Rank acquisition method and Precision at k(p@k) performance verification method for verifying the face recognition performance of the low-dimensional face feature by the proposed algorithm. To generate the experimental results of face recognition we used the FERET, LFW and PubFig83 database. The face recognition system using the proposed algorithm showed a better classification performance over the existing methods.

Neural-network-based Fault Detection and Diagnosis Method Using EIV(errors-in variables) (EIV를 이용한 신경회로망 기반 고장진단 방법)

  • Han, Hyung-Seob;Cho, Sang-Jin;Chong, Ui-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1020-1028
    • /
    • 2011
  • As rotating machines play an important role in industrial applications such as aeronautical, naval and automotive industries, many researchers have developed various condition monitoring system and fault diagnosis system by applying artificial neural network. Since using obtained signals without preprocessing as inputs of neural network can decrease performance of fault classification, it is very important to extract significant features of captured signals and to apply suitable features into diagnosis system according to the kinds of obtained signals. Therefore, this paper proposes a neural-network-based fault diagnosis system using AR coefficients as feature vectors by LPC(linear predictive coding) and EIV(errors-in variables) analysis. We extracted feature vectors from sound, vibration and current faulty signals and evaluated the suitability of feature vectors depending on the classification results and training error rates by changing AR order and adding noise. From experimental results, we conclude that classification results using feature vectors by EIV analysis indicate more than 90 % stably for less than 10 orders and noise effect comparing to LPC.

Ultrasonic Signal Analysis with DSP for the Pattern Recognition of Welding Flaws

  • Kim, Jae-Yeol;Cho, Gyu-Jae;Kim, Chang-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.106-110
    • /
    • 2000
  • The researches classifying the artificial flaws in welding parts are performed using the pattern recognition technology. For this purpose the signal pattern recognition package including user defined function is developed and the total procedure is made up the digital signal processing, feature extraction, feature selection, classfier design. Specially it is composed with and discussed using the ststistical classfier such as the linear discriminant function classfier, the empirical Bayesian classfier.

  • PDF

Multimodal System by Data Fusion and Synergetic Neural Network

  • Son, Byung-Jun;Lee, Yill-Byung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.157-163
    • /
    • 2005
  • In this paper, we present the multimodal system based on the fusion of two user-friendly biometric modalities: Iris and Face. In order to reach robust identification and verification we are going to combine two different biometric features. we specifically apply 2-D discrete wavelet transform to extract the feature sets of low dimensionality from iris and face. And then to obtain Reduced Joint Feature Vector(RJFV) from these feature sets, Direct Linear Discriminant Analysis (DLDA) is used in our multimodal system. In addition, the Synergetic Neural Network(SNN) is used to obtain matching score of the preprocessed data. This system can operate in two modes: to identify a particular person or to verify a person's claimed identity. Our results for both cases show that the proposed method leads to a reliable person authentication system.