• Title/Summary/Keyword: Linear discriminant analysis(LDA)

Search Result 171, Processing Time 0.024 seconds

A Study on Detection and Recognition of Facial Area Using Linear Discriminant Analysis

  • Kim, Seung-Jae
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.40-49
    • /
    • 2018
  • We propose a more stable robust recognition algorithm which detects faces reliably even in cases where there are changes in lighting and angle of view, as well it satisfies efficiency in calculation and detection performance. We propose detects the face area alone after normalization through pre-processing and obtains a feature vector using (PCA). The feature vector is applied to LDA and using Euclidean distance of intra-class variance and inter class variance in the 2nd dimension, the final analysis and matching is performed. Experimental results show that the proposed method has a wider distribution when the input image is rotated $45^{\circ}$ left / right. We can improve the recognition rate by applying this feature value to a single algorithm and complex algorithm, and it is possible to recognize in real time because it does not require much calculation amount due to dimensional reduction.

Recognition of Numeric Characters in License Plate based on Independent Component Analysis (독립성분 분석을 이용한 번호판 숫자 인식)

  • Jeong, Byeong-Jun;Kang, Hyun-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.99-107
    • /
    • 2009
  • This paper presents an enhanced hybrid model based on Independent Component Analysis(ICA) in order to features of numeric characters in license plates. ICA which is used only in high dimensional statistical features doesn't consider statistical features in low dimension and correlation between numeric characters. To overcome the drawbacks of ICA, we propose an improved ICA with the hybrid model using both Principle Component Analysis(PCA) and Linear Discriminant Analysis(LDA). Experiment results show that the proposed model has a superior performance in feature extraction and recognition compared with ICA only as well as other hybrid models.

Robust Speech Recognition for Application to Mobile Phone (휴대폰 단말기에 적용을 위한 강인한 음성인식)

  • 손종목;정성윤;배건성
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.495-498
    • /
    • 2001
  • 최근 음싱인식이 인간과 기계 사이의 자연스러운 통신을 위한 가장 중요한 수단으로 인식되어 이와 관련된 연구가 구준히 이루어져 왔으며, 일부 응용 분야에서는 성공적으로 적용되고 있다. 하지만, 좀 더 다양한 응용분야에 적용하기 위해서는 실제 환경에 존재하는 여러가지 주변잡음에 강인한 특성을 가지는 인식 시스템이 요구된다. 본 연구에서는 음성인식 시스템을 휴대전화에 적용하기 위해 도메인 적응 기법, LDA (Linear Discriminant Analysis) 기법 등을 도입하여 시스템 DB의 크기를 줄이고 잡음에 대한 강인성을 높이고자 하였으며, HMM (Hidden Markov Model)에 기반한 음싱인식 시스템을 사용하여 각 기법의 적용에 따른 인식성능을 평가하였다.

  • PDF

Discriminant analysis of grain flours for rice paper using fluorescence hyperspectral imaging system and chemometric methods

  • Seo, Youngwook;Lee, Ahyeong;Kim, Bal-Geum;Lim, Jongguk
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.633-644
    • /
    • 2020
  • Rice paper is an element of Vietnamese cuisine that can be used to wrap vegetables and meat. Rice and starch are the main ingredients of rice paper and their mixing ratio is important for quality control. In a commercial factory, assessment of food safety and quantitative supply is a challenging issue. A rapid and non-destructive monitoring system is therefore necessary in commercial production systems to ensure the food safety of rice and starch flour for the rice paper wrap. In this study, fluorescence hyperspectral imaging technology was applied to classify grain flours. Using the 3D hyper cube of fluorescence hyperspectral imaging (fHSI, 420 - 730 nm), spectral and spatial data and chemometric methods were applied to detect and classify flours. Eight flours (rice: 4, starch: 4) were prepared and hyperspectral images were acquired in a 5 (L) × 5 (W) × 1.5 (H) cm container. Linear discriminant analysis (LDA), partial least square discriminant analysis (PLSDA), support vector machine (SVM), classification and regression tree (CART), and random forest (RF) with a few preprocessing methods (multivariate scatter correction [MSC], 1st and 2nd derivative and moving average) were applied to classify grain flours and the accuracy was compared using a confusion matrix (accuracy and kappa coefficient). LDA with moving average showed the highest accuracy at A = 0.9362 (K = 0.9270). 1D convolutional neural network (CNN) demonstrated a classification result of A = 0.94 and showed improved classification results between mimyeon flour (MF)1 and MF2 of 0.72 and 0.87, respectively. In this study, the potential of non-destructive detection and classification of grain flours using fHSI technology and machine learning methods was demonstrated.

A Study on Recognition of Both of New & Old Types of Vehicle Plate (신, 구 차량 번호판 통합 인식에 관한 연구)

  • Han, Kun-Young;Woo, Young-Woon;Han, Soo-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.1987-1996
    • /
    • 2009
  • Recently, the color of vehicle license plate has been changed from green to white. Thus the vehicle plate recognition system used for parking management systems, speed and signal violation detection systems should be robust to the both colors. This paper presents a vehicle license plate recognition system, which works on both of green and white plate at the same time. In the proposed system, the image of license plate is taken from a captured vehicle image by using morphological information. In the next, each character region in the license plate image is extracted based on the vertical and horizontal projection of plate image and the relative position of individual characters. Finally, for the recognition process of extracted characters, PCA(Principal Component Analysis) and LDA(Linear Discriminant Analysis) are sequentially utilized. In the experiment, vehicle license plates of both green background and white background captured under irregular illumination conditions have been tested, and the relatively high extraction and recognition rates are observed.

Evolutionary Computing Driven Extreme Learning Machine for Objected Oriented Software Aging Prediction

  • Ahamad, Shahanawaj
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.232-240
    • /
    • 2022
  • To fulfill user expectations, the rapid evolution of software techniques and approaches has necessitated reliable and flawless software operations. Aging prediction in the software under operation is becoming a basic and unavoidable requirement for ensuring the systems' availability, reliability, and operations. In this paper, an improved evolutionary computing-driven extreme learning scheme (ECD-ELM) has been suggested for object-oriented software aging prediction. To perform aging prediction, we employed a variety of metrics, including program size, McCube complexity metrics, Halstead metrics, runtime failure event metrics, and some unique aging-related metrics (ARM). In our suggested paradigm, extracting OOP software metrics is done after pre-processing, which includes outlier detection and normalization. This technique improved our proposed system's ability to deal with instances with unbalanced biases and metrics. Further, different dimensional reduction and feature selection algorithms such as principal component analysis (PCA), linear discriminant analysis (LDA), and T-Test analysis have been applied. We have suggested a single hidden layer multi-feed forward neural network (SL-MFNN) based ELM, where an adaptive genetic algorithm (AGA) has been applied to estimate the weight and bias parameters for ELM learning. Unlike the traditional neural networks model, the implementation of GA-based ELM with LDA feature selection has outperformed other aging prediction approaches in terms of prediction accuracy, precision, recall, and F-measure. The results affirm that the implementation of outlier detection, normalization of imbalanced metrics, LDA-based feature selection, and GA-based ELM can be the reliable solution for object-oriented software aging prediction.

Fault Diagnosis of Induction Motor using Linear Discriminant Analysis (선형판별분석기법을 이용한 유도전동기의 고장진단)

  • 전병석;이상혁;박장환;유정웅;전명근
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.104-111
    • /
    • 2004
  • In this paper, we propose a diagnosis algorithm to detect faults of induction motor using LDA First, after reducing the input dimension of a current value measured by experiment at each period using PCA method, we extract characteristic vectors for each fault using LDA Next, we analyze the driving condition of an induction motor using the Euclidean distance between a precalculated characteristic vector and an input vector. Finally, from the experiments under various noise conditions showing the properties of the LDA method, we obtained better results than the case of using the PCA method.

Gait Type Classification Using Pressure Sensor of Smart Insole

  • Seo, Woo-Duk;Lee, Sung-Sin;Shin, Won-Yong;Choi, Sang-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.2
    • /
    • pp.17-26
    • /
    • 2018
  • In this paper, we propose a gait type classification method based on pressure sensor which reflects various terrain and velocity variations. In order to obtain stable gait classification performance, we divide the whole gait data into several steps by detecting the swing phase, and normalize each step. Then, we extract robust features for both topographic variation and speed variation by using the Null-LDA(Null-Space Linear Discriminant Analysis) method. The experimental results show that the proposed method gives a good performance of gait type classification even though there is a change in the gait velocity and the terrain.

A Local Feature-Based Robust Approach for Facial Expression Recognition from Depth Video

  • Uddin, Md. Zia;Kim, Jaehyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1390-1403
    • /
    • 2016
  • Facial expression recognition (FER) plays a very significant role in computer vision, pattern recognition, and image processing applications such as human computer interaction as it provides sufficient information about emotions of people. For video-based facial expression recognition, depth cameras can be better candidates over RGB cameras as a person's face cannot be easily recognized from distance-based depth videos hence depth cameras also resolve some privacy issues that can arise using RGB faces. A good FER system is very much reliant on the extraction of robust features as well as recognition engine. In this work, an efficient novel approach is proposed to recognize some facial expressions from time-sequential depth videos. First of all, efficient Local Binary Pattern (LBP) features are obtained from the time-sequential depth faces that are further classified by Generalized Discriminant Analysis (GDA) to make the features more robust and finally, the LBP-GDA features are fed into Hidden Markov Models (HMMs) to train and recognize different facial expressions successfully. The depth information-based proposed facial expression recognition approach is compared to the conventional approaches such as Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Linear Discriminant Analysis (LDA) where the proposed one outperforms others by obtaining better recognition rates.

Improvement of generalization of linear model through data augmentation based on Central Limit Theorem (데이터 증가를 통한 선형 모델의 일반화 성능 개량 (중심극한정리를 기반으로))

  • Hwang, Doohwan
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.19-31
    • /
    • 2022
  • In Machine learning, we usually divide the entire data into training data and test data, train the model using training data, and use test data to determine the accuracy and generalization performance of the model. In the case of models with low generalization performance, the prediction accuracy of newly data is significantly reduced, and the model is said to be overfit. This study is about a method of generating training data based on central limit theorem and combining it with existed training data to increase normality and using this data to train models and increase generalization performance. To this, data were generated using sample mean and standard deviation for each feature of the data by utilizing the characteristic of central limit theorem, and new training data was constructed by combining them with existed training data. To determine the degree of increase in normality, the Kolmogorov-Smirnov normality test was conducted, and it was confirmed that the new training data showed increased normality compared to the existed data. Generalization performance was measured through differences in prediction accuracy for training data and test data. As a result of measuring the degree of increase in generalization performance by applying this to K-Nearest Neighbors (KNN), Logistic Regression, and Linear Discriminant Analysis (LDA), it was confirmed that generalization performance was improved for KNN, a non-parametric technique, and LDA, which assumes normality between model building.