• Title/Summary/Keyword: Linear discriminant analysis(LDA)

Search Result 171, Processing Time 0.021 seconds

Robot Control based on Steady-State Visual Evoked Potential using Arduino and Emotiv Epoc (아두이노와 Emotiv Epoc을 이용한 정상상태시각유발전위 (SSVEP) 기반의 로봇 제어)

  • Yu, Je-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.254-259
    • /
    • 2015
  • In this paper, The wireless robot control system was proposed using Brain-computer interface(BCI) systems based on the steady-state visual evoked potential(SSVEP). Cross Power Spectral Density(CPSD) was used for analysis of electroencephalogram(EEG) and extraction of feature data. And Linear Discriminant Analysis(LDA) and Support Vector Machine(SVM) was used for patterns classification. We obtained the average classification rates of about 70% of each subject. Robot control was implemented using the results of classification of EEG and commanded using bluetooth communication for robot moving.

A study on user defined spoken wake-up word recognition system using deep neural network-hidden Markov model hybrid model (Deep neural network-hidden Markov model 하이브리드 구조의 모델을 사용한 사용자 정의 기동어 인식 시스템에 관한 연구)

  • Yoon, Ki-mu;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.131-136
    • /
    • 2020
  • Wake Up Word (WUW) is a short utterance used to convert speech recognizer to recognition mode. The WUW defined by the user who actually use the speech recognizer is called user-defined WUW. In this paper, to recognize user-defined WUW, we construct traditional Gaussian Mixture Model-Hidden Markov Model (GMM-HMM), Linear Discriminant Analysis (LDA)-GMM-HMM and LDA-Deep Neural Network (DNN)-HMM based system and compare their performances. Also, to improve recognition accuracy of the WUW system, a threshold method is applied to each model, which significantly reduces the error rate of the WUW recognition and the rejection failure rate of non-WUW simultaneously. For LDA-DNN-HMM system, when the WUW error rate is 9.84 %, the rejection failure rate of non-WUW is 0.0058 %, which is about 4.82 times lower than the LDA-GMM-HMM system. These results demonstrate that LDA-DNN-HMM model developed in this paper proves to be highly effective for constructing user-defined WUW recognition system.

Support Vector Machine Based Arrhythmia Classification Using Reduced Features

  • Song, Mi-Hye;Lee, Jeon;Cho, Sung-Pil;Lee, Kyoung-Joung;Yoo, Sun-Kook
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.571-579
    • /
    • 2005
  • In this paper, we proposed an algorithm for arrhythmia classification, which is associated with the reduction of feature dimensions by linear discriminant analysis (LDA) and a support vector machine (SVM) based classifier. Seventeen original input features were extracted from preprocessed signals by wavelet transform, and attempts were then made to reduce these to 4 features, the linear combination of original features, by LDA. The performance of the SVM classifier with reduced features by LDA showed higher than with that by principal component analysis (PCA) and even with original features. For a cross-validation procedure, this SVM classifier was compared with Multilayer Perceptrons (MLP) and Fuzzy Inference System (FIS) classifiers. When all classifiers used the same reduced features, the overall performance of the SVM classifier was comprehensively superior to all others. Especially, the accuracy of discrimination of normal sinus rhythm (NSR), arterial premature contraction (APC), supraventricular tachycardia (SVT), premature ventricular contraction (PVC), ventricular tachycardia (VT) and ventricular fibrillation (VF) were $99.307\%,\;99.274\%,\;99.854\%,\;98.344\%,\;99.441\%\;and\;99.883\%$, respectively. And, even with smaller learning data, the SVM classifier offered better performance than the MLP classifier.

Three-dimensional Distortion-tolerant Object Recognition using Computational Integral Imaging and Statistical Pattern Analysis (집적 영상의 복원과 통계적 패턴분석을 이용한 왜곡에 강인한 3차원 물체 인식)

  • Yeom, Seok-Won;Lee, Dong-Su;Son, Jung-Young;Kim, Shin-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1111-1116
    • /
    • 2009
  • In this paper, we discuss distortion-tolerant pattern recognition using computational integral imaging reconstruction. Three-dimensional object information is captured by the integral imaging pick-up process. The captured information is numerically reconstructed at arbitrary depth-levels by averaging the corresponding pixels. We apply Fisher linear discriminant analysis combined with principal component analysis to computationally reconstructed images for the distortion-tolerant recognition. Fisher linear discriminant analysis maximizes the discrimination capability between classes and principal component analysis reduces the dimensionality with the minimum mean squared errors between the original and the restored images. The presented methods provide the promising results for the classification of out-of-plane rotated objects.

A Study on Recognition of Both of PCA and LAD Using Types of Vehicle Plate (PCA와 LDA을 이용한 차량 번호판 통합 인식에 관한 연구)

  • Lee, Jin-Ki;Kim, Hyun-Yul;Lee, Seung-Kyu;Lee, Geon-Wha;Park, Yung-Rok;An, Ki-Nam;Bae, Cheol-Su;Park, Young-Cheol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.1
    • /
    • pp.6-17
    • /
    • 2013
  • Recently, the color of vehicle license plate has been changed from green to white. Thus the vehicle plate recognition system used for parking management systems, speed and signal violation detection systems should be robust to the both colors. This paper presents a vehicle license plate recognition system, which works on both of green and white plate at the same time. In the proposed system, the image of license plate is taken from a captured vehicle image by using morphological information. In the next, each character region in the license plate image is extracted based on the vertical and horizontal projection of plate image and the relative position of individual characters. Finally, for the recognition process of extracted characters, PCA(Principal Component Analysis) and LDA(Linear Discriminant Analysis) are sequentially utilized. In the experiment, vehicle license plates of both green background and white background captured under irregular illumination conditions have been tested, and the relatively high extraction and recognition rates are observed.

Improvements of Multi-features Extraction for EMG for Estimating Wrist Movements (근전도 신호기반 손목 움직임의 추정을 위한 다중 특징점 추출 기법 알고리즘)

  • Kim, Seo-Jun;Jeong, Eui-Chul;Lee, Sang-Min;Song, Young-Rok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.757-762
    • /
    • 2012
  • In this paper, the multi feature extraction algorithm for estimation of wrist movements based on Electromyogram(EMG) is proposed. For the extraction of precise features from the EMG signals, the difference absolute mean value(DAMV), the mean absolute value(MAV), the root mean square(RMS) and the difference absolute standard deviation value(DASDV) to consider amplitude characteristic of EMG signals are used. We figure out a more accurate feature-set by combination of two features out of these, because of multi feature extraction algorithm is more precise than single feature method. Also, for the motion classification based on EMG, the linear discriminant analysis(LDA), the quadratic discriminant analysis(QDA) and k-nearest neighbor(k-NN) are used. We implemented a test targeting twenty adult male to identify the accuracy of EMG pattern classification of wrist movements such as up, down, right, left and rest. As a result of our study, the LDA, QDA and k-NN classification method using feature-set with MAV and DASDV showed respectively 87.59%, 89.06%, 91.75% accuracy.

Classification of pathological and normal voice based on dimension reduction of feature vectors (피처벡터 축소방법에 기반한 장애음성 분류)

  • Lee, Ji-Yeoun;Jeong, Sang-Bae;Choi, Hong-Shik;Hahn, Min-Soo
    • Proceedings of the KSPS conference
    • /
    • 2007.05a
    • /
    • pp.123-126
    • /
    • 2007
  • This paper suggests a method to improve the performance of the pathological/normal voice classification. The effectiveness of the mel frequency-based filter bank energies using the fisher discriminant ratio (FDR) is analyzed. And mel frequency cepstrum coefficients (MFCCs) and the feature vectors through the linear discriminant analysis (LDA) transformation of the filter bank energies (FBE) are implemented. This paper shows that the FBE LDA-based GMM is more distinct method for the pathological/normal voice classification than the MFCC-based GMM.

  • PDF

A Comparative Study of Classification Methods Using Data with Label Noise (레이블 노이즈가 존재하는 자료의 판별분석 방법 비교연구)

  • Kwon, So Young;Kim, Kyoung Hee
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2853-2864
    • /
    • 2018
  • Discriminant analysis predicts a class label of a new observation with an unknown label, using information from the existing labeled data. Hence, observed labels play a critical role in the analysis and we usually assume that these labels are correct. If the observed label contains an error, the data has label noise. Label noise can frequently occur in real data, which would affect classification performance. In order to resolve this, a comparative study was carried out using simulated data with label noise. In particular, we considered 4 different classification techniques such as LDA (linear discriminant analysis classifiers), QDA (quadratic discriminant analysis classifiers), KNN (k-nearest neighbour), and SVM (support vector machine). Then we evaluated each method via average accuracy using generated data from various scenarios. The effect of label noise was investigated through its occurrence rate and type (noise location). We confirmed that the label noise is a significant factor influencing the classification performance.

Face Recognition using Wavelet transform and LDA (웨이블렛 변환과 LDA를 이용한 얼굴인식)

  • 민준오;고현주;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.185-188
    • /
    • 2003
  • 본 논문은 복합적인 상황을 고려한 데이터를 이용하여 얼굴인식을 하는 연구로서, 이산 웨이블렛을 기반으로 하는 다 해상도 분석 방법을 사용하고, 각 해상도로 분해된 영상 중, 스케일 함수에 의해 사영되어진 영역에 LDA(Linear Discriminant Analysis)를 적용하여, 도출된 결과가 기존의 방법들에 비해 더 안정된 성능을 나타냄을 보이고자 한다. 이를 위해, 웨이블렛을 적용하지 않은 이미지에 PCA, LDA, ICA를 이용한 결과와 웨이블렛을 적용한 이미지에 통계적 방법들을 이용한 경우, 그리고 웨이블렛의 각 대역에 통계적인 방법을 적용한 후, 대수적인 합을 하였을 때의 인식율을 학습과 검증의 이미지배열을 바꾸어 가며 총 열여덟회 실험하였다. 이에, 본 논문에서 제안한 방법이 이미지 배열에 영향을 덜 받는 안정적인 성능을 가지고 있음을 확인 할 수 있었다.

  • PDF

On an Information Theoretic Diagnostic Measure for Detecting Influential Observations in LDA

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.2
    • /
    • pp.289-301
    • /
    • 1996
  • This paper suggests a new diagnostic measure for detecting influential observations in two group linear discriminant analysis(LDA). It is developed from an information theoretic point of view using the minimum discrimination information(MDI) methodology. MDI estimator of symmetric divergence by Kullback(l967) is taken as a measure of the power of discrimination in LDA. It is shown that the effect of an observation over the power of discrimination is fully explained by the diagnostic measure. Asymptotic distribution of the proposed measure is derived as a function of independent chi-squared and standard normal variables. By means of the distributions, a couple of methods are suggested for detecting the influential observations in LDA. Performance of the suggested methods are examined through a simulation study.

  • PDF