• Title/Summary/Keyword: Linear discontinuous source

Search Result 6, Processing Time 0.022 seconds

A Study on the Reduction of Cogging Force of Stationary Discontinuous Armature Linear Synchronous Motor Using Auxiliary Teeth

  • Kim, Yong-Jae;Lee, Kyu-Myung;Watada, Masaya
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.281-287
    • /
    • 2011
  • The stationary discontinuous armatures that are used in permanent magnet linear synchronous motors (PM-LSMs) have been proposed as a driving source for transportation systems. However, the stationary discontinuous armature PM-LSM contains the outlet edges which always exist as a result of the discontinuous arrangement of the armature. For this reason, the high alteration of the outlet edge cogging force produced between the armature's core and the mover's permanent magnet when a mover passes the boundary between the armature's installation part and non-installation part has been indicated as a problem. Therefore, we have examined the outlet edge cogging force by installing the auxiliary teeth at the armature's outlet edge in order to minimize the outlet edge cogging force generated when the armature is arranged discontinuously. Moreover, we obtained the calculation by analyzing the shape of the auxiliary teeth in which the outlet edge cogging force is minimized the most.

Acceleration of step and linear discontinuous schemes for the method of characteristics in DRAGON5

  • Hebert, Alain
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1135-1142
    • /
    • 2017
  • The applicability of the algebraic collapsing acceleration (ACA) technique to the method of characteristics (MOC) in cases with scattering anisotropy and/or linear sources was investigated. Previously, the ACA was proven successful in cases with isotropic scattering and uniform (step) sources. A presentation is first made of the MOC implementation, available in the DRAGON5 code. Two categories of schemes are available for integrating the propagation equations: (1) the first category is based on exact integration and leads to the classical step characteristics (SC) and linear discontinuous characteristics (LDC) schemes and (2) the second category leads to diamond differencing schemes of various orders in space. The acceleration of these MOC schemes using a combination of the generalized minimal residual [GMRES(m)] method preconditioned with the ACA technique was focused on. Numerical results are provided for a two-dimensional (2D) eight-symmetry pressurized water reactor (PWR) assembly mockup in the context of the DRAGON5 code.

A Study on the reduction of cogging force of stationary discontinuous armature Permanent Magnet Linear Synchronous Motor by change in Auxiliary pole (보조극 변화에 따른 전기자 분산배치 영구자석형 리니어 동기 모터의 코깅력 저감에 관한 연구)

  • Lee, Kyu-Myung;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.6
    • /
    • pp.613-619
    • /
    • 2010
  • The stationary discontinuous armatures that are used in permanent magnet linear synchronous motors (PM-LSMs) have been proposed as a driving source for transportation systems. However, the stationary discontinuous armature PM-LSM contains the outlet edges which always exist as a result of the discontinuous arrangement of the armature. For this reason, the outlet edge cogging force generated between the armature's core and the mover's permanent magnet. This paper contemplated the outlet cogging for ceaccording to 2-D numerical analysis by FEM. We installed the auxiliary pole for in order to minimize the outlet cogging force.

Design of Auxiliary Teeth on the Edge of Stationary Discontinuous Armature PM-LSM with Concentrated Winding

  • Kim, Sung-Jin;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.352-356
    • /
    • 2013
  • Recently, the stationary discontinuous armature, Permanent Magnet Linear Synchronous Motor (PM-LSM), was suggested as a driving source for long-distance transportation system. However, as these motors arrange armatures discontinuously, an edge occurs thereby leading to a cogging force. This works as a factor that hinders the acceleration and deceleration that takes place when movers enter into and eject from armatures. Therefore, in this study, the installation of auxiliary teeth on the edge of the armature of PM-LSM is suggested in order to reduce the cogging force caused by the edge when the armature is placed in a discontinuous arrangement. Auxiliary teeth are optimally designed by a 2-D numerical analysis using the finite element method was performed to generate the optimum design of the auxiliary teeth. The validity of the study was confirmed through the comparison of the cogging force induced at the edge in respect to the design parameter using the basic model.

Drive Investigation of the Discontinuous Primary Linear Synchronous Motor in the Re-accelerator (1차측 분산 배치 리니어 동기 모터의 재가속부에서의 구동 고찰)

  • Kim Yong-jae;Um Yong-su;Watada Masaya;Torii Susumu;Ebihara Daiki
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.797-799
    • /
    • 2004
  • The discontinuous primary linear synchronous motor is proposed as a driving source in the middle-distance transportation systems in factories and facilities. This paper describes the examination about the acceleration characteristics and a synchronizing method when the secondary mover overlaps with the primary from the inertia travel motion section in the whole of the re-acceleration part.

  • PDF

A Study on Auxiliary Pole and Teeth Combinations for Edge Effect Reduction of Stationary Discontinuous Armature PM-LSM with Concentrated winding (전기자 분산배치 집중권 PMLSM의 단부 효과 저감을 위한 보조극과 보조치 조합에 관한 연구)

  • Kim, Sung-Jin;Kim, Yong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1611-1616
    • /
    • 2012
  • Recently, the stationary discontinuous armature Permanent Magnet Linear Synchronous Motor(PM-LSM) was suggested as a driving source for long-distance transportation system. However, as these motors arrange armatures discontinuously, there occurs an edge which causes the cogging force. This works as a factor that bothers acceleration and deceleration that takes place when movers enter into and eject from the armatures. Therefore, installation of auxiliary teeth on the edge of armature of PM-LSM is suggested in order to reduce cogging force caused by the edge when the armature is placed in a discontinuous arrangement. But length of auxiliary teeth can be changed if install it with auxiliary pole in order to decrease more and more edge cogging force. On this, in the study, decided on a design variable of auxiliary teeth and used 2-D FEA, and examined edge cogging force characteristic along this in order to grasp length of auxiliary teeth changed according to installation positions of an auxiliary pole.