• 제목/요약/키워드: Linear brushless DC motor(LBLDCM)

검색결과 3건 처리시간 0.017초

고속 정밀용 브러시 없는 리니어 직류 모터 개발 (Development of a Brushless Linear DC Motor for High Speed and Precise Position Control)

  • 이강원;조영준;송창섭
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.73-80
    • /
    • 1998
  • Recently, we have developed a linear brushless DC motor(LBLDCM) with high speed and precise position control performance to apply it to the semiconductor assembly and inspection machinery. It is composed of double side alignment by two armature-stator pairs and each pair is consist of a moving armature with 8 poles by 3 phase coils and a stator with rare earth permanent magnet (Nd-Fe-B) arrays. Through the thrust force analysis on a simplified and whole model of the suggested LBLDCM by an Electromagnetic FEM solver, skew angle of magnet arrays to reduce the thrust force ripple and the winding conditions of the armature is designed. From experimental results, the user's requirements was satisfied and we confirmed distinctly that the repeatable accuracy less than a micron of the linear motion can be obtained at high speed by the developed LBLDCM. This is owing to directly drive the work without the gear train.

  • PDF

외란 관측기를 이용한 리니어 BLDC 모터의 정밀위치제어 (Precise Positioning Control of Linear Brushless DC Motor using Disturbance Observer)

  • 고재원;이교범;구영모
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2399-2401
    • /
    • 2001
  • This Paper presents a positioning control method of the LBLDCM(Linear Brushless DC Motor) under friction. The friction may cause steady state position error. So it is necessary to consider friction effect for precision positioning control. The proposed control method uses disturbance observer algorithm and friction compensation. The experimental results of the proposed control method based on the disturbance observer are presented to show its effectiveness.

  • PDF

축소 모델을 이용한 마찰력의 마찰력의 온라인 추정 및 보상기법 (A friction compensation scheme based on the on-line estimation with a reduced model)

  • 최재일;양상식
    • 제어로봇시스템학회논문지
    • /
    • 제2권3호
    • /
    • pp.174-180
    • /
    • 1996
  • The friction is one of the nonlinearities to be considered in the precise position control of a system which has electromechanical components. The friction has complicated nonlinear characteristics and depends on the velocity, the position and the time. The conventional fixed friction compensator and the controller based on linear control theory may cause the steady state position error or oscillation. The plant to be controlled in this study is a positioning system with a linear brushless DC motor(LBLDCM). The system behaves like a 4th-order model including the compliance and the friction. In this study, the plant model is simplified to a 2nd-order model to reduce the computation in on- line estimation. Also, to reduce the computation time, only the friction is estimated on-line while the mass and the viscous damping coefficient are fixed to the values obtained from off-line estimation. The validity of the proposed scheme is illustrated with the computer simulation and the experiment where the friction is compensated by using the estimation.

  • PDF