• Title/Summary/Keyword: Linear actuator

Search Result 632, Processing Time 0.028 seconds

Design of leaf spring with high fatigue life applied to horizontal linear vibrating actuator (수평 선형 진동 모터에 적용 가능한 높은 피로 수명을 가진 판 스프링 설계)

  • Lee, Ki-Bum;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5684-5688
    • /
    • 2012
  • This paper aims to design the leaf spring of high fatigue life which guides the moving part of the horizontal linear vibrating actuator. The vertical linear vibrating actuator has been used as the vibration device for haptic and alarm function on smart phone. However, the vibrating actuator has a major cause on the limitation to make smart phone slim because of its own characteristic of vertical direction vibration. The horizontally linear vibrating actuator for smart phone slimness has been developed in recent years. One of the most significant parts of horizontal vibrating linear actuator is the guide spring which supports moving part of actuator and enables actuator to vibrate elastically. Various types of leaf springs were designed and analyzed to get the required stiffness with high fatigue life through the stress analysis using commercial structural analysis program, ANSYS. The experiments were performed with prototypes to measure vibration acceleration and life time of leaf spring.

Analysis of Serial Piston Actuator on the Dynamic Characteristics by Electromechanical Energy Conversion (에너지 변환론에 의한 직선형 피스톤 액추에이터의 동작 특성 해석에 관한 연구)

  • 김양호;이해경;황석영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.110-114
    • /
    • 2004
  • This paper deals with the dynamic characteristic analysis of linear actuator(LA) considered with coupling of mechanical spring system This application of linear actuator is increasing due to simple mechanical structure, a high efficiency, and a stable motional action. This paper proposed and analyzed the Serial Piston Actuator(SPA) by using mechanical spring system coupled with linear actuator through the simplified structure which was verified practical experiments.

Modeling and Analysis of a Novel Two-Axis Rotary Electromagnetic Actuator for Fast Steering Mirror

  • Long, Yongjun;Wang, Chunlei;Dai, Xin;Wei, Xiaohui;Wang, Shigang
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.130-139
    • /
    • 2014
  • This paper focuses on the modeling and analysis a novel two-axis rotary normal-stress electromagnetic actuator with compact structure for fast steering mirror (FSM). The actuator has high force density similar to a solenoid, but its torque output is nearly a linear function of both its driving current and rotation angle, showing that the actuator is ideal for FSM. In addition, the actuator is designed with a new cross topology armature and no additional axial force is generated when the actuator works. With flux leakage being involved in the actuator modeling properly, an accurate analytical model of the actuator, which shows the actuator's linear characteristics, is obtained via the commonly used equivalent magnetic circuit method. Finally, numerical simulation is presented to validate the analytical actuator model. It is shown that the analytical results are in a good agreement with the simulation results.

Dynamic Characteristics of ALA and Active Vibration Control Experiment (ALA 동적 특성 및 능동진동제어 실험)

  • Lee, Han-Dong;Kwak, Moon-K.;Kim, Jeong-Hoon;Song, Yoon-Chul;Shim, Jae-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.781-787
    • /
    • 2009
  • This research is concerned with the application of the active linear actuator to the active vibration control of structure. The active linear actuator will be mounted on the sub-frame so that it can cancel the excitation transferred from the engine. Accelerometer mounted on the sub-frame detects the vibration and its signal is fed into the DSP controller where the control algorithm is installed. The output of the DSP controller is connected to the driver which amplifies the DSP output. In general, the pulse width modulation power amplifier is used to drive the voice-coil type actuator. This study shows the dynamic characteristics of the active linear actuator and active vibration control experimental results.

A Study on Design and Characteristics of Linear Magnetostrictive Actuator Using Terfenol-D (Terfenol-D를 이용한 선형 자기변형 구동기의 설계 및 특성 연구)

  • 임채욱;정태영;문석준;김병현
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.308-316
    • /
    • 2003
  • Terfenol-D is one of magnetostrictive materials which have the property of converting the energy in magnetic fields into mechanical movement and vice versa. We designed and fabricated a linear magnetostrictive actuator using Terfenol-D. It has 25 mm diameter and 100 mm long. To grasp the characteristics of it, a series of tests were performed in the range of 50 Hz below. Induced-strain actuation displacements of the actuator measured by test and predicted by magnetic analysis agreed well. And blocked forces according to the input currents were estimated from the testing results. Modelling method representing the exerting force of a linear magnetostrictive actuator was confirmed through some testing results.

A New Velocity Measurement Method using Linear Type Hall-effect Sensor for Electro-mechanical Fin Actuator (선형홀센서를 이용한 전기식 구동장치의 속도 신호 구현)

  • Gu, Jeong-Hoi;Song, Chi-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.70-75
    • /
    • 2010
  • The objective of this paper is to propose a new velocity measurement method for an electro-mechanical fin actuator. The model of the electro-mechanical fin actuator includes uncertainties such as unknown disturbances and parameter variations in flight condition. So, an electro-mechanical fin actuator system needs robust control algorithm which requires not only position information but also velocity information. Usually, analog tachometers have been used for velocity feedback in an electro-mechanical fin actuator. However, using these types of sensors have problems such as the cost, space, and malfunction. These problems lead to propose a new velocity measurement method using linear type Hall-effect sensor. In order to verify the proposed method, several experiments are performed using Model Following Sliding Mode Controller(MFSMC). It is shown that the MFSMC with a new velocity measurement method using linear type Hall-effect sensor can satisfy the requirements without using of velocity sensor.

Dynamic characteristics of ALA and Active Vibration Control Experiment (ALA 동적 특성 및 능동진동제어 실험)

  • Lee, Han-Dong;Kwak, Moon-K.;Kim, Jeong-Hoon;Song, Yoon-Chul;Shim, Jae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.639-644
    • /
    • 2009
  • This research is concerned with the application of the active linear actuator to the active vibration control of structure. The active linear actuator will be mounted on the sub-frame so that it can cancel the excitation transferred from the engine. Accelerometer mounted on the sub-frame detects the vibration and its signal is fed into the DSP controller where the control algorithm is installed. The output of the DSP controller is connected to the driver which amplifies the DSP output. In general, the pulse width modulation power amplifier is used to drive the voice-coil type actuator. This study shows the dynamic characteristics of the active linear actuator and active vibration control experimental results.

  • PDF

Application of Linear Oscillatory Actuator to Active Structural Vibration Control (Linear oscillatory actuator를 이용한 구조물 진동의 능동 제어 연구)

  • 정태영;문석준;정종안;박희창;장석명
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.311-317
    • /
    • 1997
  • In this paper the active vibration control system using a linear oscillatory actuator(LOA) is studied to suppress structural vibration. In the LOA, the AC-power-energized armature generates a shift field in an air gap, which produces a oscillating force to the mover in the magnetic field generated by high density permanent magnets. LOA has relatively simple structure with almost maintenance free, compared with a hydraulic actuator. Performance test of the active vibration control system using a LOA is carried out on a steel test structure under base excitation. From this test, it is confirmed that the acceleration level of the test structure is drastically reduced near the resonant region.

  • PDF

Driving Algorithm for Contact-free Linear Actuator (비접촉 선형 구동기를 위한 구동 알고리즘)

  • 이상헌;백윤수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1034-1037
    • /
    • 2003
  • Recently in the field of precision positioning device, the contact-free actuators are gaining focuses with their outstanding performances by eliminating mechanical frictions. Th is paper is about the driving algorithm for contact-free linear actuator. The proposed driving algorithm has similar structure of drives of switched reluctance motor and reduces the normal forces and force ripple. The simulation and experiment are executed to verify the proposed method.

  • PDF

Stick-slip Friction Modeling and Performance Comparison of a Precise Linear Actuator (정밀 직선구동 액츄어에이터의 스틱슬립 마찰 모형화 및 성능특성 비교)

  • Kim, Sang-Chae;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.64-71
    • /
    • 2001
  • In general, precise linear actuators using piezoelectric element are driven by friction force. Exact understanding of friction plays an important role in analysis and control of a motor. In this research, we designed a precise linear actuator using piezoelectric elements and observed its dynamic characteristics. By varying phase angle difference and amplitudes of the sinusoidal waves that are driving inputs, we can know that it is possible to control moving direction and distance of the slider. As preload is increased, its moving distance is decreased. And also, we have modeled a precise linear actuator using stick slip friction models such as classical, Karnopp. and reset integrator. Finally, by comparing the results of simulation and experiment, it was verified that the model is well designed.

  • PDF