This study aimed to assess of beam-matching accuracy for an 8 MV beam between the same model linear accelerators(Linac) commissioned over two years. Two models were got the customer acceptance procedure(CAP) criteria. For commissioning data for beam-matched linacs, the percentage depth doses(PDDs), beam profiles, output factors, multi-leaf collimator(MLC) leaf transmission factors, and the dosimetric leaf gap(DLG) were compared. In addition, the accuracy of beam matching was verified at phantom and patient levels. At phantom level, the point doses specified in TG-53 and TG-119 were compared to evaluate the accuracy of beam modelling. At patient level, the dose volume histogram(DVH) parameters and the delivery accuracy are evaluated on volumetric modulated arc therapy(VMAT) plan for 40 patients that included 20 lung and 20 brain cases. Ionization depth curve and dose profiles obtained in CAP showed a good level for beam matching between both Linacs. The variations in commissioning beam data, such as PDDs, beam profiles, output factors, TF, and DLG were all less than 1%. For the treatment plans of brain tumor and lung cancer, the average and maximum differences in evaluated DVH parameters for the planning target volume(PTV) and the organs at risk(OARs) were within 0.30% and 1.30%. Furthermore, all gamma passing rates for both beam-matched Linacs were higher than 98% for the 2%/2 mm criteria and 99% for the 2%/3 mm criteria. The overall variations in the beam data, as well as tests at phantom and patient levels remains all within the tolerance (1% difference) of clinical acceptability between beam-matched Linacs. Thus, we found an excellent dosimetric agreement to 8 MV beam characteristics for the same model Linacs.
The CdTe semiconductor detector has a higher detection efficiency for x-rays and $\square$amma rays and a wider energy band gap compared with Si and Ge semiconductor detectors. Therefore, the size of the detector element can be made small, and can be operated at room temperature. The interaction between a CdTe detector and incident x-rays is mainly photoelectric absorption in the photon energy range of up to 100 keV. In this energy range, Compton effects are almost negligible. We have developed a 256 channel CdTe array detector system for monochromatic x-ray CT using synchrotron radiation. The CdTe array detector system, the element size of which is 1.98 mm (h) x 1.98 mm (w) x 0.5 mm (t), was operated in photon counting mode. In order to improve the spatial resolution, we tilted the CdTe array detector against the incident parallel monochromatic x-ray beam. The experiments were performed at the BL20B2 experimental hutch in SPring-8. The energy of incident monochromatic x-rays was set at 55 keV. Phantom measurements were performed at the detector angle of 0, 30 and 45 degrees against the incident parallel monochromatic x-rays. The linear attenuation coefficients were calculated from the reconstructed CT images. By increasing the detector angle, the spatial resolutions were improved. There was no significant difference between the linear attenuation coefficients which were corrected by the detector angle. It was found that this method was useful for improving the spatial resolution in a parallel monochromatic x-ray CT system.
치료방사선 선형가속기에서 출력되는 광자선의 선속 (flux)에는 gantry head로부터 발생되는 오염전자를 포함하고 있으며, 오염전자의 발생은 주로 gantry head의 부속장비 또는 방사선 치료를 위해 gantry head 밑에 설치되는 부속장치 등에서 광자선과 매질의 전자쌍생성, 또는 컴프톤 산란전자 등의 물리적 현상으로 발생된다. 오염전자는 표면영역의 수cm 깊이의 선량 분포에 영향을 주고 있으며, 이것은 방사선 치료 시 skin-sparing 효과를 감소시키는 등 임상적인 측면에 영향을 주고 있다. 그러므로 선형가속기에서 발생되는 오염전자의 특성을 이해 할 필요가 있다. 본 연구는 선형가속기 (Clinac 1800, Varian )에서 출력되는 15MV 광자 선속에서 조사야의 크기가 0.0$\times$10.0 to 30.0$\times$30.0 $\textrm{cm}^2$에서 30.0$\times$30.0 $\textrm{cm}^2$ 대해 구리판(Cu)의 부분적 오염전자 제거 능력과, 조사야의 부분 차폐 방법을 이용하여 물팬톰 내의 선량분포의 변화를 측정하므로써 오염전자의 특성을 분석하였다. 그 결과 오염전자는 조사야의 중심축으로부터 넓게 퍼진 cone 모양의 분포를 하고 있었으며, 또한 오염전자가 갖는 평균 에너지는 약 3.0MeV로 나타났다. 그러므로 오염전자는 표면으로부터 2.5cm 깊이까지 분포하였다. 이러한 결과로써 광자선속에 포함된 오염전자를 제거하고 순수한 광자선을 이용한다면 buildup 영역 및 표면선량이 감소되고, 최대선량지점이 좀더 깊어진다.
본 연구에서는 몬테칼로 전산모사 코드인 GATE6 (Geant4 Application for Tomographic Emission ver.6)를 사용하여 의료용 선형 가속기인 Varian사의 Clinac 21EX를 모사하고, 6 MV 광자선의 선량 특성을 평가하였다. 몬테칼로 방법은 방사선 치료시 환자 내의 선량분포를 계산하는 가장 정확한 방법으로 널리 이용되고 있다. 몬테칼로 기반의 코드를 이용하여 선형가속기의 조사 헤드부를 통과하는 입자의 흐름을 모사하는 것은 조사선량을 정량화 하는데 필요한 입자들의 에너지, 공간 분포와 같은 임상적인 빔의 특성을 결정하기 위한 실용적인 방법이다. 본 연구에서 모사한 선형가속기의 조사 헤드부는 빔 경로에 위치한 타겟, 일차 콜리메이터, 선속 평탄 필터, 이온전리함, 이차 콜리메이터로 구성된다. 모사된 선형가속기를 이용하여 선원-표면간 거리 100 cm, 조사야 $10{\times}10cm^2$ 조건에서 물팬텀 내의 광자선 에너지 스펙트럼(energy spectrum), 심부선량백분율(percentage depth dose), 선량프로파일(dose profiles)을 측정하였으며, 이 결과값을 실험 측정값과 비교하여 정확성을 검증하였다. 본 연구에서는 모사를 통한 결과값과 실험값이 매우 일치함을 보였으며, 이를 통해 GATE6 전산모사 코드는 방사선치료에 사용되는 광자선을 모사하기에 효과적임을 입증하였다.
국내에서 처음으로 사용되는 CLINAC 1800에서 발생된 15MV X-선의 특성을 구하기 위하여 3 Dimensional water Phantom Dosimetry system)를 이용하여 방사선 치료에 근간이 되는 심부선량 백분율(POD), 최대 조직 비율(TMR), 편평도(beam profile), 대칭도, Wedge인자 등을 측정하였고 선량계산을 위하여 출력 인자들을 구하였다. 1. 선축상 최대치 지점(Dmax)은 SSD 100cm일때 조사면이 $10\times10cm^2$에서 $3.0\pm0.1$ cm이였고 $4\times4cm^2,\;35\times35cm^2$에서 각각 $3.1\pm0.1\;cm,2.2\pm0.1$ cm으로 조사면이 넓어지면서 측정치가 표면에 가까워지는 결과를 보였다. 2. 조직표면 선량(Surface Dose)는 SSD 100cm일때 조사면이 $10\times10cm^2$에서 $15.5\%$이였고 $4\times4cm^2,\;35\times35cm^2$에서 각각 $9.8\%\;,51.2\%$로 조사면이 넓어지면서 표면 선량은 증가하는 결과를 보였다. 3. 심부선량 백분율(PDO)은 SSD 100cm에서 측정하였고 조사면이 $10\times10cm^2$이고 10cm depth에서 $76.8\%$이였고 $80\%,\;50\%$ 선량의 깊이는 각각 $9.1\pm0.1\;cm,19.9\pm0.2\;cm$으로 측정되었다. 4. 최대조직비율(TMR)은 심부선량 백분율(PDD)로부터 계산하였고 측정값과의 차이는 $10\times10cm^2$ 조사면에서 평균 $1\;%$ 이내의 오차를 보였다. 5. 대칭도(symmetry)와 편평도(flatness)는 조사면 $10\times10cm^2$일때 각각 $0.73\%,\;2.72\%$이였다. 6. 출력인자(output factor)는 $10\times10cm^2$ 기준 조사면에서 흡수선량을 1로 하였을때 $4\times4cm^2,\;35\times35cm^2$ 조사면에서는 각각 0.927, 1.087로 측정되었는데 조사면이 증가할수록 흡수량이 증가하는 결과를 보였다. 7. Wedge factor는 $15^{\circ}\;30^{\circ}\;45^{\circ}\;60^{\circ}$를 10cm깊이에서 측정하였는데 0.825, 0.099, 0.560, 0.457로 각각 측정되었고 아크릴 0.4 mm Tray의 투과율은 0.976이였다. 8. 15 MV X-선에 의한 납벽층의 반가층 두께는 13 mm였고 Cerrobend의 반가층은 15.5 mm으로 측정되었다.
의료용 선형가속장치의 두부 구성요소 중 광자 발생의 원인이 되는 타깃에 대한 연구로써, 타깃의 재질에 따른 광자를 분석하여 타깃 재질 별 발생하는 광자특성에 대한 기초자료를 제시하고자 한다. 본 연구에서는 몬테카를로 방식을 바탕으로 한 MCNPX를 사용하여 타깃 재질에 따른 6, 15 MV의 광자 특성을 비교분석하였다. 타깃 재질 별 평균에너지는 6 MV에서 1.69 ~ 1.84 MeV, 15 MV에서는 3.38 ~ 3.56 MeV로 분석되었다. Flux는 6 MV에서 $1.64{\times}10^{-5}{\sim}1.80{\times}10^{-5}{\sharp}/cm^2/e$, 15 MV는 $1.76{\times}10^{-4}{\sim}1.85{\times}10^{-4}{\sharp}/cm^2/e$로 계산되었다. 결과를 분석하면, 타깃 재질이 고원자번호일수록 평균에너지와 Flux가 증가하는 것으로 평가다. 본 연구를 바탕으로 광자의 물리적 특성에 대한 기초적인 자료를 제시할 수 있었으며, 추후 타깃 선정 시 경제성, 효율성은 물론 물리적 측면을 고려할 수 있어 적절한 선택을 할 수 있을 것으로 판단된다.
본 연구에서는 Geant4 시뮬레이터를 이용하여 Varian 2100C/D 선형가속기의 헤드 부분과 다엽콜리메이터를 모델링한 후 6 MV 광자 선속에 대해 선량분포 평가의 기본이 되는 물팬텀($50{\times}50{\times}50\;cm^3$) 내에서의 심부선량백분율(Percentage depth dose)과 측면선량(lateral dose)에 대해 검출기를 이용한 측정 결과와 시뮬레이션 결과를 비교 평가하였다. 시뮬레이션은 두 단계로 나누어 진행하였다. 첫 번째 단계에서 타겟을 통해 나오는 광자의 에너지 스펙트럼을 측정하였다. 다음 단계에서 셈플링한 에너지 스펙트럼에 따라 광자를 직접 팬텀에 조사하는 방식으로 수행하였다. 실험 결과 $5{\times}5 \;cm^2$와 $10{\times}10\;cm^2$ 조사야에서의 심부선량백분율과 16 mm, 50 mm, 100 mm에서 측정한 측면 선량 모두 측정값과 비교하여 2% 이내의 오차를 보여 임상적으로 허용범위 안의 오차를 확인하였고 다엽콜리메이터의 정확도는 1 mm 이내의 오차를 확인 할 수 있었다. 본 연구의 연구 결과를 기초로 한 계산적 방법은 오차가 많이 발생하는 비균질성 조직 내에서의 선량분포 연구와 DICOM 데이터를 적용한 선량 계산 시뮬레이션 응용에서 활용하기 위해 선행되어야 하는 기초 자료로서 활용가치가 있다고 판단된다.
저 강도 자기장을 이용하여 기존의 6 MV 광자선에 대한 선량 상승보다 향상된 선량 변조 방법을 제안하고 이를 실험적으로 선량 효과를 확인하고자 하였다. 0.5 T (Tesla) 강도를 지니는 두 개의 네오디뮴 영구 자석을 광자선에 수직 방향으로 자기장을 인가하였다. 자석과 자석 간의 거리(MMD)와 자석과 물 표면 간의 거리(MSD)에 따라 자기장을 인가한 경우와 인가하지 않은 경우에서의 선량 상승 영역의 선량 변화를 측정하였다. 자석과 자석 간의 거리가 6 cm이고 자석과 물 표면 간의 거리가 2.5 cm 조건에서 기존 6 MV 광자선의 선량 상승 곡선과 비교하여 $D_{0mm}$, $D_{2mm}$, $D_{5mm}$, $D_{10mm}$ 가 각각 6.8 %, 14.6 %, 6.9 %, 2.1 %의 향상된 선량 효과를 보였다. 본 연구를 통해 피부와 매우 인접한 곳에 위치해 있는 표적 체적을 방사선 치료할 경우, 인체 외부에 바로 자기장을 인가하면서 기존 광자선보다 향상된 선량 상승을 기대할 수 있어 임상 적용 가능성이 높을 것으로 기대된다.
Background: As breast tissue expanders consist of metallic materials in the needle guard and ferromagnetic injection port, irradiation can produce radioactivation. Materials and Methods: A CPX4 (Mentor Worldwide LLD) breast tissue expander was exposed using the Versa HD (Elekta) linear accelerator. Two photon energies of 6 and 10 MV-flattening filter free (FFF) beams with 5,000 monitor units (MU) were irradiated to identify the types of radiation. Furthermore, 300 MU with 10 MV-FFF beam was exposed to the CPX4 breast tissue expander by varying the machine dose rates (MDRs) 600, 1,200, and 2,200 MU/min. To assess the instantaneous dose rates (IDRs) solely from the CPX4, a tissue expander was placed outside the treatment room after beam irradiation, and a portable radioisotope identification device was used to identify the types of radiation and measure IDR. Results and Discussion: After 5,000 MU delivery to the CPX4 breast tissue expander, the energy spectrum whose peak energy of 511 keV was found with 10 MV-FFF, while there was no resultant one with 6 MV-FFF. The time of each measurement was 1 minute, and the mean IDRs from the 10 MV-FFF were 0.407, 0.231, and 0.180 μSv/hr for the three successive measurements. Following 10 MV-FFF beam irradiation with 300 MU indicated around the background level from the first measurement regardless of MDRs. Conclusion: As each institute room entry time protocol varies according to the working hours and occupational doses, we suggest an addition of 1 minute from the institutes' own room entry time protocol in patients with CPX4 tissue expander and the case of radiotherapy vaults equipped with a maximum energy of 10 MV photon beams.
In this study, one-dimensional fiber-optic radiation sensor with an organic scintillator tip is fabricated to measure high energy X-ray beam profile of CLINAC. According to the energy and field size of X-ray, scintillating light signal from one-dimensional fiber-optic sensor is measured using a photodiode-amplifier system. This sensor has many advantages such as high resolution, real-time measurement and ease calibration over conventional ion chamber and film.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.