• Title/Summary/Keyword: Linear accelerator photon beam

Search Result 85, Processing Time 0.027 seconds

Study on 6 MV Photon beam Dosimetry by Asymmetric Collimator Variation of Linear Accelerator (6MV 선형가속기의 비대칭 조사야의 변화에 따른 선량분포)

  • Yoon, Joo-Ho;Lee, Chul-Soo;Yum, Ha-Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.12 no.1
    • /
    • pp.91-104
    • /
    • 2000
  • Recently linear accelerator in radiation therapy in asymmetric field has been easily used since the improvement and capability of asymmetrical field adjustment attached to the machine. It has been thought there have been some significant errors in dose calculation when asymmetrical radiation fields have been utilized in practice of radiation treatments if the fundamental data for dose calculation have been measured in symmetrical standard fields. This study investigated how much the measured data of dose distributions and their isodose curves are different between in asymmetrical and symmetrical standard fields, and how much there difference affect the error in dose calculation in conventional method measured in symmetrical standard field. The distributions of radiation dose were measured by photon diode detector in the water phantom (RFA-300P, Scanditronix, Sweden) as tissue equivalent material on utilization of 6 MV linear accelerator with source surface distance (SSD) 1000 mm. The photon diode detector has the velocity of 1 mm per second from water surface to 250 mm depth in the field size of $40mm{\times}40mm\;to\;250mm{\times}250mm\;symmetric\;field\;and\;40mm{\times}20mm\;to\;250mm{\times}125mm$ asymmetrical fields. The measurements of percent depth dose (PDD) and subsequent plotting of their isodose curves were performed from water surface to 250mm dmm from Y-center axis in $100mm{\times}50mm$ field in order to absence the variability of depth dose according to increasing field sizes and their affects to plotted isodose curves. The difference of PDD between symmetric and asymmetric field was maximum $4.1\%\;decrease\;in\;40mm{\times}20mm\;field,\;maximum\;6.6\%\;decrease\;in\;100mm{\times}50mm\;and\;maximum\;10.2\%\;decrease\;200mm{\times}100mm$, the larger decrease difference of PDD as the greater field size and as greater the depth, The difference of PDD between asymmetrical field and equivalent square field showed maximum $2.4\%\;decrease\;in\;60mm{\times}30mm\;field,\;maximum\;4.8\%\;decrease\;in\;150mm{\times}75mm\;and\;maximum\;6.1\%\;decrease\;in\;250mm{\times}125mm$, and the larger decreased differenced PDD as the greater field size and as greater the depth, these differences of PDD were out of $5\%$ of dose calculation as defined by international Commission on radiation unit and Measurements(ICRU). In the dose distribution of asymmetrical field (half beam) the plotted isodose curves were observed to have deviations by decreased PDD as greater as the blocking of the beam moved closer to the central axis, and as the asymmetrical field increased by moving the block 10 mm keeping away from the central axis, the PDD increased and plotted isodose curves were gradually more flattened, due to reduced amount of the primary beam and the fraction of low energy soft radiations by passing thougepth in asymmetrical field by moving independent jaw each 10 h beam flattening filter. As asymmetrical radiation field as half beam radiation technique is used, the radiation dosimetry calculated in utilizing the fundamental data which measured in standard symmetrical field should be converted on bases of nearly measured data in asymmetrical field, measured beam data flies of various asymmetrical field in various energy and be necessary in each institution.

  • PDF

Comparison of Beam Quality Index of High Photon Beam (고에너지 광자선의 선질 지표에 관한 비교)

  • 신동오;지영훈;박성용;박현주;김회남;홍성언;권수일;서태석;최보영
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.185-192
    • /
    • 1998
  • It is necessarily to evaluate the energy of X-ray emitted from linear accelerator in order to determine the accurate absorbed dose. The method of direct measurement for x-ray energy is very difficult and impractical. Therefore the method of using beam quality index is generally used. Several dosimetry protocols recommend the use of quality indices such as depth of dose maximum at radiation central axis, dose gradient, and dose level. The linear accelerator manufactures follow the recommendation as dosimetry protocols. The study was performed for us to select the most suitable parameter among the Quality indices as described above. For photon beams of 4, 6, 10, 15, and 21 MV nominal energies produced by four kinds of accelerators(Mitsubishi, Scanditronix, Siemens, Varian) in eleven institutions, We evaluated the x-ray energies obtained by the Quality indices as recommended by several dosimetry protocols and manufactures. Results showed that there were energy spreads according to the same accelerators and Quality indices even though nominal energies were same. It appeared that the percent depth dose at 10 cm (D$_{10}$(%)) gave the smallest deviation and spread of energies. As energies increased, the energy deviation increased for all the quality indices. It is desirable for the use of unified quality index to compare the evaluation of beam quality at different institutions.

  • PDF

Stem Effect Correction Factor of Ionization Chamber in Exposure Measurements of High Energy Photons (고 에너지 광자선의 조사선량 측정 시 전리함의 스템효과 보정계수)

  • Park, Cheol-Woo;Lee, Jae-Seung;Kweon, Dae-Chel;Cha, Dong-Soo;Kim, Jin-Soo;Kim, Kyoung-Keun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2010
  • Ionization chambers often exhibit a stem effect, caused by interactions of radiation with air near the chamber end, or with dielectric in the chamber stem or cable. In this study measured stem effect correction factor for length of ionization chamber from medical linear accelerator recommend to with the use of stem correction method. For a model of the Farmer-type chamber, were used to calculate the beam quality correction factor. These interactions contribute to the apparent measured exposure. Additionally, it needs to consider ionization chamber use of small volume and stem effect of cable by a large field. Linear accelerator generated photons energy and increased dose repeatedly measured by using stem correction method. Stem effect was dependence of the energy and increases with photon energy conditions improved of beam quality. In conclusion, stem effect correction factor was measured within 0.4% calculated according to the exposures stem length and also supposed to determined below 1% of another stem correction method.

  • PDF

Shielding for Critical Organs and Radiation Exposure Dose Distribution in Patients with High Energy Radiotherapy (고 에너지 방사선치료에서 환자의 피폭선량 분포와 생식선의 차폐)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • High energy photon beams from medical linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. These scattered radiation do not provide therapeutic dose and are considered a hazard from the radiation safety perspective. Scattered dose of therapeutic high energy radiation beams are contributed significant unwanted dose to the patient. ICRP take the position that a dose of 500mGy may cause abortion at any stage of pregnancy and that radiation detriment to the fetus includes risk of mental retardation with a possible threshold in the dose response relationship around 100 mGy for the gestational period. The ICRP principle of as low as reasonably achievable (ALARA) was recommended for protection of occupation upon the linear no-threshold dose response hypothesis for cancer induction. We suggest this ALARA principle be applied to the fetus and testicle in therapeutic treatment. Radiation dose outside a photon treatment filed is mostly due to scattered photons. This scattered dose is a function of the distance from the beam edge, treatment geometry, primary photon energy, and depth in the patient. The need for effective shielding of the fetus and testicle is reinforced when young patients ate treated with external beam radiation therapy and then shielding designed to reduce the scattered photon dose to normal organs have to considered. Irradiation was performed in phantom using high energy photon beams produced by a Varian 2100C/D medical linear accelerator (Varian Oncology Systems, Palo Alto, CA) located at the Yonsei Cancer Center. The composite phantom used was comprised of a commercially available anthropomorphic Rando phantom (Phantom Laboratory Inc., Salem, YN) and a rectangular solid polystyrene phantom of dimensions $30cm{\times}30cm{\times}20cm$. the anthropomorphic Rando phantom represents an average man made from tissue equivalent materials that is transected into transverse 36 slices of 2.5cm thickness. Photon dose was measured using a Capintec PR-06C ionization chamber with Capintec 192 electrometer (Capintec Inc., Ramsey, NJ), TLD( VICTOREEN 5000. LiF) and film dosimetry V-Omat, Kodak). In case of fetus, the dosimeter was placed at a depth of loom in this phantom at 100cm source to axis distance and located centrally 15cm from the inferior edge of the $30cm{\times}30cm^2$ x-ray beam irradiating the Rando phantom chest wall. A acryl bridge of size $40cm{\times}40cm^2$ and a clear space of about 20 cm was fabricated and placed on top of the rectangular polystyrene phantom representing the abdomen of the patient. The leaf pot for testicle shielding was made as various shape, sizes, thickness and supporting stand. The scattered photon with and without shielding were measured at the representative position of the fetus and testicle. Measurement of radiation scattered dose outside fields and critical organs, like fetus position and testicle region, from chest or pelvic irradiation by large fie]d of high energy radiation beam was performed using an ionization chamber and film dosimetry. The scattered doses outside field were measured 5 - 10% of maximum doses in fields and exponentially decrease from field margins. The scattered photon dose received the fetus and testicle from thorax field irradiation was measured about 1 mGy/Gy of photon treatment dose. Shielding construction to reduce this scattered dose was investigated using lead sheet and blocks. Lead pot shield for testicle reduced the scatter dose under 10 mGy when photon beam of 60 Gy was irradiated in abdomen region. The scattered photon dose is reduced when the lead shield was used while the no significant reduction of scattered photon dose was observed and 2-3 mm lead sheets refuted the skin dose under 80% and almost electron contamination. The results indicate that it was possible to improve shielding to reduce scattered photon for fetus and testicle when a young patients were treated with a high energy photon beam.

The Construction of Solid State Detector System Using Commercially Available Diode and Its Application (정류기형 다이오드를 이용한 반도체 방사선 검출 장치의 제작과 그 응용에 관한 연구)

  • 신동오;홍성언;이병용;이명자
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.91-95
    • /
    • 1990
  • The solid state detector system was constructed using commercially available rectifier diode for the assessment of quality assurance in radiotherapy. Dosimetry system which consists of the electrometer and the water phanton was used for measuring small field size scanning. The measured results, which had linearity in accordance with variation of radiation dose for gamma-ray of Co- 60 and 6 and 10MV photons of linear accelerator, showed quite linear characteristics within 1% error. The percent depth dose of 10MV photon of Mevatron KD linear accelerator was measured in small field size using diode, and the results were compared with that of using ion chambers. The results show that the difference of percent depth dose between the value of diode and that of ion chamber was negligible in large field size. However, in small size less than 4$\times$4cm, the difference of percent depth dose estimated by diode and ion chamber was 4.7% by extrapolation to 0$\times$0cm. Considering the smaller volume of diode than that of ion chamber, it might be more reliable to use diode for estimating percent depth dose. Above results suggest that diode can be used for routine check such as beam profile, flatness, symmetry and energy

  • PDF

The Variation of Surface Dose by Beam Spoiler in 10 MV Photon Beam from Linear Accelerator (선형가속기 10 MV 광자선에서 산란판(Beam Spoiler) 사용 시 표면선량 변화)

  • Bae, Seong-Cheol;Kim, Jun-Ho;Lee, Choul-Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Purpose: The purpose of this study is to find a optimal beam spoiler condition on the dose distribution near the surface, when treating a squamous cell carcinoma of the head and neck and a lymphatic region with 10 MV photon beam. The use of a optimal spoiler allows elivering high dose to a superficial tumor volume, while maintaining the skin-sparing effect in the area between the surface to the depth of 0.4 cm. Materials and Methods: The lucite beam spoiler, which were a tissue equivalent, were made and placed between the surface and the photon collimators of linear accelerator. The surface-dose, the dose at the depth of 0.4 cm, and the maximum dose at the dmax were measured with a parallel-plate ionization chamber for $5{\times}5cm\;to\;30{\times}30cm^2$ field sizes using lucite spoilers with different thicknesses at varying skin-to-spoiler separation (SSS). In the same condition, the dose was measured with bolus and compared with beam spoiler. Results: The spoiler increased the surface and build-up dose and shifted the depth of maximum dose toward the surface. With a 10 MV x-ray beam and a optimal beam spoiler when treating a patient, a similer build-up dose with a 6 MV photon beam could be achieved, while maintaining a certain amount of skin spring. But it was provided higher surface dose under SSS of less than 5 cm, the spoiler thickness of more than 1.8 cm or more, and larger field size than $20{\times}20cm^2$ provided higher surface dose like bolus and obliterated the spin-sparing effect. the effects of the beam spoiler on beam profile was reduced with increasing depths. Conclusion: The lucite spoiler allowed using of a 10 MV photon beam for the radiation treatment of head and neck caner by yielding secondary scattered electron on the surface. The dose at superficial depth was increased and the depth of maximum dose was moved to near the skin surface. Spoiling the 10 MV x-ray beam resulted in treatment plans that maintained dose homogeneity without the consequence of increased skin reaction or treat volume underdose for regions near the skin surface. In this, the optimal spoiler thickeness of 1.2 cm and 1.8 cm were found at SSS of 7 cm for $10{\times}10cm^2$ field. The surface doses were measured 60% and 64% respectively. In addition, It showed so optimal that 94% and 94% at the depth of 0.4 cm and dmax respectively.

  • PDF

Monte Carlo Algorithm-Based Dosimetric Comparison between Commissioning Beam Data across Two Elekta Linear Accelerators with AgilityTM MLC System

  • Geum Bong Yu;Chang Heon Choi;Jung-in Kim;Jin Dong Cho;Euntaek Yoon;Hyung Jin Choun;Jihye Choi;Soyeon Kim;Yongsik Kim;Do Hoon Oh;Hwajung Lee;Lee Yoo;Minsoo Chun
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.150-157
    • /
    • 2022
  • Purpose: Elekta synergy® was commissioned in the Seoul National University Veterinary Medical Teaching Hospital. Recently, Chung-Ang University Gwang Myeong Hospital commissioned Elekta Versa HDTM. The beam characteristics of both machines are similar because of the same AgilityTM MLC Model. We compared measured beam data calculated using the Elekta treatment planning system, Monaco®, for each institute. Methods: Beam of the commissioning Elekta linear accelerator were measured in two independent institutes. After installing the beam model based on the measured beam data into the Monaco®, Monte Carlo (MC) simulation data were generated, mimicking the beam data in a virtual water phantom. Measured beam data were compared with the calculated data, and their similarity was quantitatively evaluated by the gamma analysis. Results: We compared the percent depth dose (PDD) and off-axis profiles of 6 MV photon and 6 MeV electron beams with MC calculation. With a 3%/3 mm gamma criterion, the photon PDD and profiles showed 100% gamma passing rates except for one inplane profile at 10 cm depth from VMTH. Gamma analysis of the measured photon beam off-axis profiles between the two institutes showed 100% agreement. The electron beams also indicated 100% agreement in PDD distributions. However, the gamma passing rates of the off-axis profiles were 91%-100% with a 3%/3 mm gamma criterion. Conclusions: The beam and their comparison with MC calculation for each institute showed good performance. Although the measuring tools were orthogonal, no significant difference was found.

Evaluation of Lung Dose Using Linac Photon Beam in Geant 4 Simulation (Geant4 Simulation에서 Linac 광자선을 이용한 폐 선량평가)

  • Jang, Eun-Sung;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.443-450
    • /
    • 2018
  • The Geant 4 simulated the linear accelerator (VARIAN CLINAC) based on the previously implemented BEAMnrC data, using the head structure of the linear accelerator. In the 10 MV photon flux, Geant4 was compared with the measured value of the percentage of the deep dose and the lateral dose of the water phantom. In order to apply the dose calculation to the body part, the actual patient's lung area was scanned at 5 mm intervals. Geant4 dose distributions were obtained by irradiating 10 MV photons at the irradiation field ($5{\times}5cm^2$) and SAD 100 cm of the water phantom. This result is difficult to measure the dose absorbed in the actual lung of the patient so the doses by the treatment planning system were compared. The deep dose curve measured by water phantom and the deep dose curve calculated by Geant4 were well within ${\pm}3%$ of most depths except the build-up area. However, at the 5 cm and 20 cm sites, 2.95% and 2.87% were somewhat higher in the calculation of the dose using Geant4. These two points were confirmed by the geometry file of Genat4, and it was found that the dose was increased because thoracic spine and sternum were located. In cone beam CT, the dose distribution error of the lungs was similar within 3%. Therefore, if the contour map of the dose can be directly expressed in the DICOM file when calculating the dose using Geant4, the clinical application of Geant4 will be used variously.

Improvement of Beam-Quality Evaluation Method for Medical Linear Accelerator Using Magnetic Field

  • Kim, Jeongho;Han, Manseok;Yoo, Sejong;Kim, Kijin;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.120-128
    • /
    • 2015
  • Beam-quality of medical linac evaluations vary by diverse factors. Because conventional beam-quality evaluation methods yield fragmentary results, a new beam-evaluation method is suggested, and its feasibility is evaluated. The PDDs (percentage depth doses) of 6 MV (Mega-voltage) and 10 MV photon, R (Range) of a 6 MeV (Mega Electron-voltage) and 9 MeV electron were measured and compared with the conventional evaluation methods, and the improved methods $PDD^{10}{_5}$, $PDD^{20}{_{10}}$, $PDD^{30}{_{20}}$, $PDD^{20}{_5}$, $PDD^{30}{_{10}}$, and $R^{70}{_{50}}$, $R^{50}{_{30}}$, $R^{70}{_{30}}$ as the magnetic field of the bending magnet was changed to +2% to -2%, and the results were compared. The comparison showed that the improved methods exhibit a higher discrimination than the conventional methods in each energy regime. $PDD^{10}{_5}$, $PDD^{30}{_{20}}$, $PDD^{30}{_{10}}$ and $R^{70}{_{50}}$, $R^{50}{_{30}}$ should be applied. These methods exhibit a higher discrimination in each energy regime than conventional beam-quality evaluation methods; therefore, they should be used for beam-quality evaluation according to the magnetic field variation.

A study of Quality evaluation for medical linear accelerator using Electronic Portal Imaging (전자포탈영상 (EPI)을 이용한 의료용 선형가속기의 성능평가에 관한 연구)

  • 윤성익;권수일;추성실
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.105-113
    • /
    • 1998
  • Accurate radiation dosimetric characters is very important to determine of dose to a radiotherapeutic patient. Medical linear accelerators have been developed not only its new quality of convenient operation but also electric moderation. It is reliable to measure more detail physical parameter that linac's internal ability. Typically, radiation dosimetric tool is classified ionization chamber, film, thermoluminescence dosimeter, etc. Nowaday, Electronic Portal Imaging Device is smeared in radiation field to verification of treatment region. EPID's image was focused that using both on-line image verification and absolutely minimum absorbed dose during radiotherapy. So, Electronic Portal Imaging was tested for quality evaluation of medical linear accelerator had its pure conditional flash. This study has performed symmetry, Light/Radiation field congruence, and energy check, geometry difference on wedge filter using a liquid filled ion chamber (EPID). Prior to irradiated on EPID, high energy photon beam is checked with ion chamber. Using these results more convenient dosimetric method is accomplished by EPID that taken digital image. Medical image is acquired with EPID too. Therefore, EPID can be analyzed by numerical information for what want to see or get more knowledge for natural human condition.

  • PDF