Purpose: The objective of this study is to perform Postal dosimetry audits for medical linear accelerators in radiation therapy institutions using glass dosimeters and Gafchromic film reading systems and postal dosimetry audit procedures, and to evaluate radiation therapy doses and mechanical accuracy in medical institutions. Methods: Photon output measured and analyzed using a standard phantom for measuring photon output dose using a glass dosimeter for medical linear accelerators. Mechanical accuracy was measured and analyzed using software for film measurement. Results: Measurement and analysis of photon beam output dose using a standard phantom glass dosimeter for photon beam output dose measurement was completed. All tolerance doses were within 5%. Mechanical accuracy measurement and analysis using a standard phantom for verifying the mechanical accuracy of linear accelerator (LINAC) using a Gafchromic film were completed, and all results were shown within tolerances (2 mm or less). Conclusions: In this study, Postal dosimetry audits were performed on the output dose and mechanical accuracy of photon beams (207 beams) for 106 LINACs from 48 institutions. As a result of corrective action and re-execution, it was confirmed that all engines met the acceptable standard within 2 mm in the linear accelerator.
Kim, Sangroh;Jason W. Sohn;Cho, Byung-Chul;Suh, Tae-Suk;Choe, Bo-Yong;Lee, Hyoung-Koo
한국의학물리학회:학술대회논문집
/
한국의학물리학회 2002년도 Proceedings
/
pp.113-115
/
2002
The Monte Carlo simulation method is a numerical solution to a problem that models objects interacting with other objects or their environment based upon simple object-object or object-environment relationships. In spite of its great accuracy, It was turned away because of long calculation time to simulate a model. But, it is used to simulate a linear accelerator frequently with the advance of computer technology. To simulate linear accelerator in Monte Carlo simulations, there are many parameters needed to input to Monte Carlo code. These data can be supported by a linear accelerator manufacturer. Although the model of a linear accelerator is the same, a different characteristic property can be found. Thus, we performed a commissioning process of 6MV photon beam in Varian 2300C/D model with BEAM/EGS4 Monte Carlo code. The head geometry data were put into BEAM/EGS4 data. The mean energy and energy spread of the electron beam incident on the target were varied to match Monte Carlo simulations to measurements. TLDs (thermoluminescent dosimeter) and radiochromic films were employed to measure the absorbed dose in a water phantom. Beam profile was obtained in 40cm${\times}$40cm field size and Depth dose was in 10cm${\times}$10cm. At first, we compared the depth dose between measurements and Monte Carlo simulations varying the mean energy of an incident electron beam. Then, we compared the beam profile with adjusting the beam radius of the incident electron beam in Monte Carlo simulation. The results were found that the optimal mean energy was 6MV and beam radius of 0.1mm was well matched to measurements.
부산의대 부속 병원의 전자선형가속기 (Mevatron 67) 장치를 이용 하여 표면선량의 원인이 되는 광자선의 전자오염에 대한 연구를 하였다. 표면선량은 조사야의 크기에 따라 증가하는 경향을 나타내었다. 빔내에 트레이를 설치했을 때와 트레이를 제거했을때 표면선량의 변화와 전자오염정도를 관찰하였다. 전자오염을 감소시키기 위해서 구리 필터를 트레이 밑에 부착하여 그 효과를 분석하였다. 아울러 거리를 변화 시켜가며 선량의 변화를 관찰하여 최대의 피부보호효과를 유지할 수 있는 최적의 SSD와 TSD를 구하였다. 이런 모든 결과들은 방사선 치료 환자의 피부보호에 이용될 것이다.
GEANT4 Medical Linac 2 예제 코드를 이용하여 선형가속기 전자선의 에너지 분포를 계산하였다. 입사 전자의 평균 에너지는 6, 9, 12, 16, 20 MeV이었으며, 전자선 특성에 영향을 주는 전자선 산란박 물질, 두께, 위치에 따른 에너지 분포를 계산하였다. 산란박 물질은 납, 구리, 알루미늄, 금을 사용하였다. 산란박 위치를 변경하여 선형 가속기 헤드 속 산란박 위치가 전자 및 광자 에너지 분포에 미치는 영향을 분석하였다. 의료용 선형가속기 시뮬레이션의 기초자료인 에너지 분포에 대해 여러 가지 산란박 조건을 적용하여 경향을 나타내었다. 이 결과는 선형가속기 헤드 설계에 이용될 수 있을 것으로 본다.
목적 : 선형가속기의 광자선을 이용한 두개내 소병변의 방사선수술에서 다중회전조사와 횡다중회전조사를 병용한 방사선 수술방법을 개발하고, 컴퓨터단층영상을 재구성한 방사선수술계획을 통해 선량분포를 비교하여 병변이외 정상조직의 선량을 줄이기 위한 선량변수를 구하였다. 대상 및 방법 : 선형가속기 6 MV 광자선을 이용하여 치료대 각과 선원지지체 회전 및 환자체위변위를 이용한 입체적 다중 및 횡다중회전조사를 조사하여 선량분포를 비교하였다. 입체적 선량분포와 횡단면, 시상면 및 관상면 치료대 영상재구성의 선량분포는 본 대학에서 개발한 방사선수술기구 및 소프트웨어 (Photon Knife)를 통해 이루어졌다. 입체적 다중회전조사에 의해 얻은 선량은 치료대 각이 20, 50, 120, 160 도, 각각의 선원지지체 회전각은 20-160도이며, 다중회전조사의 치료대각 30, 150도와 횡다중회전조사의 치료대각 30, 150도에 선원 회전각 20-160도를 입체조사하여 비교하였다. 결과 : 선형가속기를 이용한 방사선수술선량분포는 동일 콜리메이터에서도 치료대와 선원지지체 각에 따라 크게 변하였다. 입체횡다중회전조사를 시행한 경우 표적을 중심으로 전후방향의 선량분포는 다중회전조사만을 사용한 경우보다 선량기울기가 증가하여 정상뇌조직의 손상을 더 감소시킬 수 있음을 알 수 있었으며, 병변주위의 치명장기 위치에 따라 방사선 회전 방향을 적절히 정할 수 있다. 방사선수술의 입체선량과 주위 장기 및 표적의 On-Target 입체화는 방사선수술의 정확성, 복수개의 표적중심결정과 주위정상장기의 선량포함범위를 비교적 정확하게 보여줌을 알 수 있다. 결론 : 방사선수술선량계획의 입체화는 선량과 표적 및 주위장기의 선량범위를 입체적으로 정할 뿐만 아니라, 표적의 모양이 불규칙형일 때는 복수개의 표적중심결정에 필수적임을 알 수 있었다. 다중회전조사와 횡다중회전조사를 병합한 방사선수술은 표적주위의 치명정상장기의 손상을 줄이기 위해 총회전각의 변화없이 치명장기에 도달될 선량을 줄일 수 있으며, 25 mm 직경의 콜리메이터를 사용한 선량분포는 $80-50\%$의 간격이 $1.1\~3.0 mm$, $90\~50\%$는 $2.0\~3.0mm$를 나타내었다.
의료용 선형가속장치는 1952년에 개발된 이후 방사선 치료에 사용되어 왔으며 그 활용도가 더욱 증가하고 있다. 현재는 6 MeV 이상의 광자 에너지를 사용하는 고 에너지 방사선치료가 보편화되어 사용되고 있으나, 광핵반응에 의한 중성자의 생성으로 환자 및 술자에 대한 피폭이 문제가 되고 있다. 이에 본 연구에서는 MCNPX를 사용하여 의료용 선형가속장치에서 발생되는 6~24 MV 광자선의 스펙트럼을 분석하고, 평균에너지 및 텅스텐의 중성자 생성 임계에너지인 7.41 MeV 이상의 광자 개수를 평가하였다. 그 결과 8 MV를 시작으로 24 MV에서는 전체 검출 광자 수에 비해 0.59%의 비율로서 광핵 반응을 일으킬 수 있는 광자수가 증가함을 알 수 있었다.
선형가속기(Mitsubishi, ML15MDX)를 이용한 방사선수술시스템인 Photon Knife에서 Linac-gram을 통해 선속-표적 위치를 확인하여 신뢰성 있는 시술을 유지하도록 하였다. 선속-레이저광 교정 기구를 제작하여 레이저광의 입사점과 사출점을 조사하여 빔의 위치결정에 이용하였다. 선형가속기에 부착한 보조 콜리메이터의 고정을 확인하기 위해 Isocenter에서 5 cm 떨어진 위치에 팔각형 필름지지체를 두도록 제작하고 확인용 필름(Kodak X-omat V2)을 설치하였다. 필름에 선형가속기의 지지체를 45$^{\circ}$씩 회전조사 하여 필름에 나타난 거리로 보조 콜리메이터의 이동을 확인한 결과 실험 오차내에서 이동이 없음을 확인하였다. 임상에 이용한 체위 표시기는 10 mm 쇠구슬 제도와 납인형을 두어 PKRS 시술시 환부의 체위를 쉽게 확인할 수 있도록 고안제작되었다. 앙와위 및 우측 측와위로 조사한 방사선수술에서 표적 위치기에 있는 양측 쇠구슬과 콜리메이터 조사면과의 일치를 LINAC-gram에서 확인한 결과 CT 영상의 표적좌표와 비교해서 평균 0.8$\pm$0.26 mm 의 오차범위에서 시술하였음을 보이므로 방사선조사의 정확성을 알 수 있다. 선형가속기의 Couch 에 임의의 힘을 가했을 때 위치변동은 좌우 $\pm$5 mm, Couch 축방향으로 $\pm$1 mm, 상하로 $\pm$2 mm 이동할 수 있음을 확인하였다. 이상의 결과로 Photon knife 방사선 수술 시스템은 방사선수술 전 환부의 표적과 선속의 일치를 LINAC-gram을 통해 확인할 수 있어 시술의 신뢰도를 높일 수 있을 것으로 생각된다.
An X-ray Free Electron laser facility (PAL-XFEL) has been built in Pohang Accelerator Laboratory to provide X-ray FEL radiations for photon users. The machine consists of a 10 GeV normalconducting S-band linear accelerator and two undulator beamlines. The hard and soft X-ray beamlines will provide FEL radiations with wavelengths of 0.6 to 0.1 nm and 4.5 to 1 nm, respectively. Beam commissioning of PAL-XFEL is ongoing and user service will start in 2017. In this report, the PAL-XFEL layout and the working principle are discussed.
Zabihzadeh, Mansour;Birgani, Mohammad Javad Tahmasebi;Hoseini-Ghahfarokhi, Mojtaba;Arvandi, Sholeh;Hoseini, Seyed Mohammad;Fadaei, Mahbube
Asian Pacific Journal of Cancer Prevention
/
제17권4호
/
pp.1685-1689
/
2016
Physical wedges still can be used as missing tissue compensators or filters to alter the shape of isodose curves in a target volume to reach an optimal radiotherapy plan without creating a hotspot. The aim of this study was to investigate the dosimetric properties of physical wedges filters such as off-axis photon fluence, photon spectrum, output factor and half value layer. The photon beam quality of a 6 MV Primus Siemens modified by 150 and 450 physical wedges was studied with BEAMnrc Monte Carlo (MC) code. The calculated present depth dose and dose profile curves for open and wedged photon beam were in good agreement with the measurements. Increase of wedge angle increased the beam hardening and this effect was more pronounced at the heal region. Using such an accurate MC model to determine of wedge factors and implementation of it as a calculation algorithm in the future treatment planning systems is recommended.
고 에너지 23MV광자선의 특성 중 임상적용에 중요한 심부선량 백분율, 조직-최대선량비 (TMR), 산란-최대선량비 (SMR), 표면선량 및 출력선량 보정계수등의 변수가 이온전리 (IC-10)함 및 평행 평판전리 (PS-033)함에 의해 측정 조사되었다. 명목상의 23 MV X-선에 대한 가속에너지는 $18.5\pm0.5$ MV로 측정되었다. Mevatron KD 8067의 23 MV X-선의 중심선속의 반가층이 기하학적인 좁은 선속으로 측정되었으며 반가층의 두께는 $24.5\;g/cm^2$이었다. 조직-최대선량비는 심부선량백분율표에서 구해졌으며, 실측치와 비교한 결과 각 조사면의 크기와 깊이에서 약간의 차이를 보였으나 평균 $0.7\pm0.5$의 오차를 나타내고 있어 계산에 의한 TMR 값과 잘 일치함을 보였다. 조사면 $0\times0\;cm^2$의 TMR 값은 zero 조사면의 유효감약계수에 의한 값과, 각 조사면의 조직-최대 선량비로 부터 비선형최소자승법에 의해 구해진 유효선흡수계수 및 반가층 측정에 의한 유효선흡수 계수에 의한 값들로 비교되었으며, $\mu=0.0283{\pm}0,0002cm^{-1}$을 보였고, 세 방법 모두 오차범위내에서 잘 일치됨을 보였다. 한편, 불규칙 조사면의 선량계산에 이용될 SMR은 조사면의 반경 50cm까지 계산되어 대형 조사 면에서도 선량율 산출이 이루어지도록 하였다. Mevatron KD 8067의 23 MV X-선의 조직 표면선량은 SSD 100 cm, 1$10\times10\;cm^2$의 조사면에서 최대조직선량율의 $9.6\%,\;25\times25\;cm^2$에서는 $25.4\%$를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.