• Title/Summary/Keyword: Linear Type Traits

Search Result 34, Processing Time 0.018 seconds

Estimation of Genetic Variations for Linear Type Traits and Composite Traits on Holstein Cows (Holstein 젖소의 선형심사형질과 등급형질에 대한 유전변이 추정)

  • 이득환
    • Journal of Animal Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.161-168
    • /
    • 2006
  • Genetic parameters for linear type and composite traits were estimated by using Bayesian inference via Gibbs sampling with a multiple threshold animal model in Holstein cows. Fifteen linear type traits and 5 composite traits were included to estimate genetic variance and covariance components in the model. In this study, 30,204 records were obtained in the cows from 305 sires. Heritability estimates for linear type traits had the estimates as high as 0.28~0.64. Heritability estimates for composite traits were also high, when the traits were assumed to be categorical traits. Final score was more correlated with the composite traits than with the linear type traits.

Genetic Parameters for Linear Type Traits and Milk, Fat, and Protein Production in Holstein Cows in Brazil

  • Campos, Rafael Viegas;Cobuci, Jaime Araujo;Kern, Elisandra Lurdes;Costa, Claudio Napolis;McManus, Concepta Margaret
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.476-484
    • /
    • 2015
  • The objective of this study was to estimate genetic and phenotypic parameters for linear type traits, as well as milk yield (MY), fat yield (FY) and protein yield (PY) in 18,831 Holstein cows reared in 495 herds in Brazil. Restricted maximum likelihood with a bivariate model was used for estimation genetic parameters, including fixed effects of herd-year of classification, period of classification, classifier and stage of lactation for linear type traits and herd-year of calving, season of calving and lactation order effects for production traits. The age of cow at calving was fitted as a covariate (with linear and quadratic terms), common to both models. Heritability estimates varied from 0.09 to 0.38 for linear type traits and from 0.17 to 0.24 for production traits, indicating sufficient genetic variability to achieve genetic gain through selection. In general, estimates of genetic correlations between type and production traits were low, except for udder texture and angularity that showed positive genetic correlations (>0.29) with MY, FY, and PY. Udder depth had the highest negative genetic correlation (-0.30) with production traits. Selection for final score, commonly used by farmers as a practical selection tool to improve type traits, does not lead to significant improvements in production traits, thus the use of selection indices that consider both sets of traits (production and type) seems to be the most adequate to carry out genetic selection of animals in the Brazilian herd.

Adjustment of Lactation Number and Stage on Informal Linear Type Traits of Holstein Dairy Cattle

  • Do, Chang-Hee;Jeon, Beong-Soon;Sang, Byung-Chan;Lee, Dong-Hee;Pearson, Ronald E.
    • Journal of Animal Science and Technology
    • /
    • v.52 no.6
    • /
    • pp.467-473
    • /
    • 2010
  • A total of 4,323,781 records for informal 16 primary linear descriptive traits of dairy cows in Holstein breed from 1988 to 2007 in USA were analyzed to estimate adjustment factors for lactation number and stage. While all factors in the model were highly significant (P < 0.01), major influences on linear type traits were due to lactation number and stage. The frequencies of lactation number 1 through 6 were 58.6, 22.0, 11.8, 4.8, 2.1, and 0.8%, respectively. Further, the frequencies of lactation stage were 0.7, 76.9, 15.3, 4.9, and 2.1%, respectively, for springing, early, medium, late, and dry. To adjust 16 linear traits (stature, dairy form, strength, body depth, rump width, rump angle, legs rear view, leg set, foot angle, fore udder, rear udder height, rear udder width, udder support, udder depth, and front teat placement), additive and multiplicative adjustment factors of lactation number (lactations 2 to 4) and stage (springing, medium, late and dry) were estimated with the solutions in the generalized linear model, assigning lactation 1 and stage early as base class. Additive adjustment factors of lactation number ranged from -1.23 to 2.908, while multiplicative factors ranged from 0.853 to 2.207. Further, additive and multiplicative adjustment factors for lactation stage ranged from -0.668 to 0.785, and from 0.891 to 1.154. Application of adjustment factors to 20 randomly sampled sub-data sets produced the results that additive adjustment factors for both lactation number and stage reduced more mean square of lactation number and stage over 16 linear traits than any combination of adjustments, and leaded additive adjustment factors for both lactation number and stage as a choice of methods for adjustment of informal 16 primary linear type traits collected by classifiers of AI studs.

Phenotypic Factor Analysis for Linear Type Traits in Beijing Holstein Cows

  • Chu, M.X.;Shi, S.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1527-1530
    • /
    • 2002
  • Factor analysis was applied to the phenotypic correlation matrix of 15 linear type traits (scored linearly 1 to 50 points) for 2035 Holstein cows of 38 sires computed from data collected between 1988 and 1992 in Beijing Shuangqiao Farm and Beijing Xijiao Farm. The 15 linear type traits were stature, body strength, body depth, dairy form, rump angle, rump length, rump width, rear leg side view, foot angle, fore udder attachment, rear udder height, rear udder width, udder cleft, udder depth and teat placement rear view. The first four components accounted for 49.1% of the total variance in type scores. Factor 1 reflected strong cows, with deep bodies, with long and wide rumps, and tall in stature. Factor 2 reflected cows with well attached fore udders, wide rear udders and whose udders were supported by strong suspensory ligaments with close teat placement. Factor 3 reflected cows with good dairyness, sickled in the hocks, high rear udders and udder floors above the hocks. Factor 4 reflected cows with sloping rumps from hooks to pins and with steep foot angle. Principal component and factor analyses are useful to clarify the relationships among type traits.

Factor Analysis of Genetic Evaluations For Type Traits of Canadian Holstein Sires and Cows

  • Ali, A.K.;Koots, K.R.;Burnside, E.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.463-469
    • /
    • 1998
  • Factor analysis was applied as a multivariate statistical technique to official genetic evaluations of type classification traits for 1,265,785 Holstein cows and 10,321 sires computed from data collected between August 1982 and June 1994 in Canada. Type traits included eighteen linear descriptive traits and eight major score card traits. Principal components of the factor analysis showed that only five factors explain the information of the genetic value of linear descriptive traits for both cows and sires. Factor 1 included traits related to mammary system, like texture, median suspensory, fore attachment, fore teat placement and rear attachment height and width. Factor 2 described stature, size, chest width and pin width. These two factors had a similar pattern for both cows and sires. In constrast, Factor 3 for cows involved only bone-quality, while in addition for sires, Factor 3 included foot angle, rear legs desirability and legs set. Factor 4 for cows related to foot angle, set of rear leg and leg desirability, while Factor 4 related to loin strenth and pin setting for sires. Finally, Factor 5 included loin strength and pin setting for cows and described only pin setting for sires. Two factors only were required to describe score card traits of cows and sires. Factor 1 related to final score, feet and legs, udder traits, mammary system and dairy character, while frame/capacity and rump were described by Factor 2. Communality estimates which determine the proportion of variance of a type trait that is shared with other type traits via the common factor variant were high, the highest ${\geq}$ 80% for final score, stature, size and chest width. Pin width and pin desirability had the lowest communality, 56% and 37%. Results indicated shifts in emphasis over the twelve-year period away from udder traits and dairy character, and towards size, scale and width traits. A new system that computes fmal score from type components has been initiated.

Prolificacy and Its Relationship with Age, Body Weight, Parity, Previous Litter Size and Body Linear Type Traits in Meat-type Goats

  • Haldar, Avijit;Pal, Prasenjit;Rajesh, M. Datta;Pal, Saumen K.;Majumdar, Debasis;Biswas, Chanchal K.;Pan, Subhransu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.628-634
    • /
    • 2014
  • Data on age and body weight at breeding, parity, previous litter size, days open and some descriptive body linear traits from 389 meat-type, prolific Black Bengal goats in Tripura State of India, were collected for 3 and 1/2 years (2007 to 2010) and analyzed using logistic regression model. The objectives of the study were i) to evaluate the effect of age and body weight at breeding, parity, previous litter size and days open on litter size of does; and ii) to investigate if body linear type traits influenced litter size in meat-type, prolific goats. The incidence of 68.39% multiple births with a prolificacy rate of 175.07% was recorded. Higher age (>2.69 year), higher parity order (>2.31), more body weight at breeding (>20.5 kg) and larger previous litter size (>1.65) showed an increase likelihood of multiple litter size when compared to single litter size. There was a strong, positive relationship between litter size and various body linear type traits like neck length (>22.78 cm), body length (>54.86 cm), withers height (>48.85 cm), croup height (>50.67 cm), distance between tuber coxae bones (>11.38 cm) and distance between tuber ischii bones (>4.56 cm) for discriminating the goats bearing multiple fetuses from those bearing a single fetus.

Analysis of Environmental Effects for Linear Type Traits and Scoring Traits on Holstein Cows (Holstein 젖소의 선형심사형질과 등급형질에 대한 환경효과 분석)

  • 이득환;김은길
    • Journal of Animal Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.767-776
    • /
    • 2006
  • Corresponding author:Deukhwan Lee, Department of Animal Life Resources, Hankyong National Univ. Seokjeong-dong Anseong-si Gyeonggi-do, Rep. of Korea 456-749Tel: 031-670-5091, Fax: 031-676-5091, E-mail : dhlee@hknu.ac.krGeneral performance with including environmental and management effects on linear type traits in Holstein cows were investigated. 115,646 valid records measured from cows over 1 yrs of age by Korean Animal Improvement Association from 2000 to 2004 were used for this study. Farm, appraisal year-month, appraisal person should affect linear type and scoring traits. Most of type traits and scoring traits would be significantly affected by parity and lactation stage after absorbing farm-appraisal year-month-person effects. Otherwise, some traits such as traits related to udder would be affected by registration criteria. However, interval of appraisal time and milking time would not affect these traits. The scores related to udder, teat placement and foot angle would be positively related to parity. Final score would be optimized at cows of 2nd and 3rd parities. Dairy form, front teat placement, rear udder height, rear udder width and final score would show similar to pattern of lactation curve at lactation stage. Dairy capacity composite index would also show similar to lactation curve. This result would be indicated that more concise standardizing system for linear type scoring rules would be needed. Furthermore, correcting system for parity and lactation stage would be needed because this factor should affect physiological status, specially, udder status.

Factor Analysis of Linear Type Traits and Their Relation with Longevity in Brazilian Holstein Cattle

  • Kern, Elisandra Lurdes;Cobuci, Jaime Araujo;Costa, Claudio Napolis;Pimentel, Concepta Margaret McManus
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.6
    • /
    • pp.784-790
    • /
    • 2014
  • In this study we aimed to evaluate the reduction in dimensionality of 20 linear type traits and more final score in 14,943 Holstein cows in Brazil using factor analysis, and indicate their relationship with longevity and 305 d first lactation milk production. Low partial correlations (-0.19 to 0.38), the medium to high Kaiser sampling mean (0.79) and the significance of the Bartlett sphericity test (p<0.001), indicated correlations between type traits and the suitability of these data for a factor analysis, after the elimination of seven traits. Two factors had autovalues greater than one. The first included width and height of posterior udder, udder texture, udder cleft, loin strength, bone quality and final score. The second included stature, top line, chest width, body depth, fore udder attachment, angularity and final score. The linear regression of the factors on several measures of longevity and 305 d milk production showed that selection considering only the first factor should lead to improvements in longevity and 305 milk production.

Study on Genetic Evaluation for Linear Type Traits in Holstein Cows

  • Lee, Deukhwan;Oh, Sang;Whitley, Niki C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • The objectives of this study were to i) investigate genetic performance for linear type traits of individual Holstein dairy cows, especially focusing on comparative traits, and to estimate genetic variances for these traits using actual data, and ii) compare genetic performance and improvement of progeny by birth country of the cows. Linear type traits defined with five comparative traits on this study were general stature composite (GSC), dairy capacity composite (DCC), body size composite (BSC), foot and leg composite (FLC), and udder composite (UDC). These traits were scored from 1 to 6 with 1 = poor, 2 = fair, 3 = good, 4 = good plus, 5 = very good and 6 = excellent. Final scores (FS) were also included in this study. Data used was collected from the years 2000 to 2004 by the Korea Animal Improvement Association (KAIA). Only data of more than five tested cows by herd appraisal date and by sires having more than ten daughters were included to increase the reliability of the data analyses. A total of 30,204 records of the selected traits, which was collected from 26,701 individuals having pedigree information were used. Herd appraisal date, year of age, lactation stage (grouped by month), and time lagged for milking (in hours) were assumed as fixed effects on the model. Animal additive genetic effects considering pedigree relationship and residual errors were assumed with random effects. Year of age at appraisal date was classified from one to nine years of age, assigning the value of nine years of age for animals that were greater than or equal to nine years of age. From our results, the estimate for heritability was 0.463, 0.346, 0.473, 0.290, and 0.430 on GSC, DCC, BSC, FLC and UDC, respectively. The estimate for FS heritability was 0.539. The greatest breeding values for GSC were estimated for Canada, with the breeding values for American lines increasing for 10 years starting in 1989 but tending to decrease after that until 2004. For DCC, the breeding values for American and Canadian lines showed similar patterns until 1999, after which the breeding values for the American lines declined sharply. For BSC, data from Korea, Canada and the USA followed similar trends overall except when the breeding values of the American lines decreased starting in 1999. Overall, the methods used to evaluate genetic performance in this study were acceptable and allowed for the discovery of differences by country of genetic origin, likely due in part to the American use of selection indexes based primarily on milk yield traits until methods for evaluating other traits began to emerge.

Genetic parameters for somatic cell score, milk yield and type traits in Nigerian Dwarf goats

  • Valencia-Posadas, Mauricio;Lechuga-Arana, Alma Arianna;Avila-Ramos, Fidel;Shepard, Lisa;Montaldo, Hugo H.
    • Animal Bioscience
    • /
    • v.35 no.3
    • /
    • pp.377-384
    • /
    • 2022
  • Objective: This study was conducted to estimate multi-trait genetic parameters for somatic cell score (SCS), milk yield and type traits in Nigerian Dwarf (ND) goats from the United States. Methods: Data from 1,041 ND goats in the United States with kiddings in 95 herds were used to estimate multi-trait genetic parameters for SCS, milk (MILK), fat (FAT), and protein (PROT) yields, and 14 type traits. An 18-trait mixed linear animal model for lactation mean SCS (Log2), MILK, FAT, PROT, and 14 type traits was applied. A factor analytic approach (FA1) in ASReml software was used to obtain convergence. Results: Averages for SCS were low (2.85±1.29 Log2), and were 314±110.6, 20.9±7.4, and 14±4.9 kg, respectively, for MILK, FAT, and PROT. Heritabilities for SCS, MILK, FAT, and PROT were 0.32, 0.16, 0.16, and 0.10, respectively. The highest heritabilities for type traits were for stature (0.72), teat diameter (0.49), and rump width (0.48), and the lowest estimates were for dairyness (0.003) and medial suspensory ligament (0.03). Genetic correlations of SCS with MILK, FAT, and PROT were positive but low (0.25, 0.18, and 0.23, respectively). Genetic and phenotypic correlations between MILK, FAT, and PROT were high and positive (≥0.66). Absolute values of genetic correlations involving SCS with type traits were generally low or no different from zero. Most of the phenotypic correlations involving SCS with type traits were low. No serious unfavorable genetic correlations between milk yield traits and SCS or between milk yield traits or SCS and type traits were found. Conclusion: Genetic variation exists in the ND breed for most studied traits. The development of selection programs based on these estimates may help accelerate favorable multi-trait genetic changes in this breed.