• 제목/요약/키워드: Linear Thermal Transmittance

검색결과 15건 처리시간 0.021초

실리콘 수지 TIR 선형 렌즈 제작 및 365 nm 파장대역 UV LED 조사기 광원 개발 (Fabrication of Silicone Resin TIR Linear Lens and Development of 365 nm Wavelength UV LED Light Source)

  • 성준호;유순재
    • 한국전기전자재료학회논문지
    • /
    • 제31권6호
    • /
    • pp.433-436
    • /
    • 2018
  • A total internal reflection (TIR) linear lens of size $190(W){\times}5(D){\times}2.1(H)mm^3$ has a directivity of $25^{\circ}$ and was made of a polydimethysiloxane (PDMS) silicone resin with a refractive index of 1.4 and a transmittance of 93% at 365 nm UV wavelength. A light source with a size of $190{\times}25.5mm^2$ was fabricated by installing a TIR linear lens on a chip on board (COB) type LED module mounted with a $1.1{\times}1.1mm^2$ size UV LED. The optical characteristics of the light source showed a maximum irradiation density of $3,840mW/cm^2$ at a working distance of 5 mm and a high uniformity of 91.6% over a $150{\times}25mm^2$ irradiation area. The thermal characteristics of the light source were measured at a supply current of 500 mA. The saturation temperature was reached after 30 min of operation, and measured to be $95^{\circ}C$.

트러스 단열 프레임을 이용한 건식 외단열 시스템의 외피 종합 성능 평가 (Evaluation of Building Envelope Performance of a Dry Exterior Insulation System Using Truss Insulation Frame)

  • 송진희;이동윤;신동일;전현도;박철용;김상균
    • 대한건축학회논문집:구조계
    • /
    • 제35권6호
    • /
    • pp.153-164
    • /
    • 2019
  • The presence of thermal bridges in a building envelope cause additional heat loss which increases the heating energy. Given that a higher building insulation performance is required in these cases, the heat loss via thermal bridges is a high proportion of the total heat energy consumption of a building. For the dry exterior insulation system that uses mullions and transoms to fix insulation and exterior materials such as stone and metal sheet, the occurrence of thermal bridges at mullions and transoms is one of the main reasons for heat loss. In this study, a dry exterior insulation system using the truss insulation frame (TIF) was proposed as an alternative to metal mullions. To evaluate the building envelope performance, structural, air-leakage, water-leakage, fire-resistance, thermal, and condensation risk tests were conducted. In addition, the annual energy consumption associated with heating and cooling was calculated, including the linear thermal transmittance of the thermal bridges. As a result, the dry exterior insulation system using TIF achieved the allowable value for all tests. It was also determined that the annual heating load of a building was reduced by 36.7 % when the TIF dry exterior insulation system was used, relative to the dry exterior insulation system using steel pipes without additional insulations.

TiO$_2$ 첨가에 의한 불투명한 실리카 에어로겔의 합성 및 특성화 (Preparation and Characterization of Opacified Silica Aerogels Doped by TiO$_2$)

  • 손봉희;현상훈
    • 한국세라믹학회지
    • /
    • 제36권2호
    • /
    • pp.159-166
    • /
    • 1999
  • 티타니아가 첨가된 불투명한 실리카 에어로겔의 물성 및 열처리에 따른 미세구조 변화가 연구되었다. 부분가수 분해된 TEOS-이소프로판을 용액에 titanium isopropoxide를 첨가한후 겔화시킨 습윤겔을 초임계건조(25$0^{\circ}C$, 1250 psig)하여 모노리스 타입 에어로겔을 합성하였으며, SiO2-10 mol% TiO2 에어로겔의 밀도와 기공율은 각각 0.23 g/㎤와 90% 이었다. 초임계건조시 티타늄의 함량이 증가함에 따라 수축율이 증가할 뿐만 아니라 티타니아는 anatase 상으로 상전이됨과 동시에 입자 응집에 의해 100~800nm 크기의 cluster로 에어로겔 내에 균일하게 분포되었다. 불투명한 에어로겔은 8$mu extrm{m}$ 이하의 적외 영역에서 순수 실리카 에어로겔에 비하여 매우 낮은 광투과율과 $600^{\circ}C$까지 높은 미세구조 안정성을 보여주었다.

  • PDF

실험계획법을 이용한 유연 디스플레이용 무색 투명 폴리이미드 필름의 광학 성능 최적화 (Optimization of Optical Performance of Colorless and Transparent Polyimide Film for Flexible Display using Design of Experiment)

  • 조다운;유연수;남희은;장진해;오충석
    • 반도체디스플레이기술학회지
    • /
    • 제21권1호
    • /
    • pp.79-84
    • /
    • 2022
  • As various flexible display products are released, the demand for high-performance colorless and transparent polyimide (CPI) film is continuously increasing. The primary purpose of this study is to establish a systematic procedure for optimizing the optical performance of CPI films by applying the response surface method. After selecting three key factors (monomer type, stirring time for varnish synthesis, and maximum temperature of vacuum furnace for film production) affecting optical performance based on experiences and references, CPI films were manufactured according to the experimental sequence designed by the central composite design, and then the yellowness index (YI) and optical transmittance (Tr) of the films were measured. When producing a CPI film by pouring varnish into a petri dish, the change in optical properties according to thickness should be considered, and there was a meaningful linear relationship between YI and Tr. The species of monomer and the maximum temperature were the critical factors that had an influence on YI and Tr, respectively. It is expected that the procedure proposed in this study can serve as a starting point for CPI film optimization studies considering the other factors that were not considered and responses such as thermal properties.

광주 지역에서 aethalometer 측정 블랙 카본 입자의 질량흡수단면 평가 (Aethalometer-based Estimate of Mass Absorption Cross Section of Black Carbon Particles at an Urban Site of Gwangju)

  • 박승식;유근혜;이상일;배민석
    • 한국대기환경학회지
    • /
    • 제34권5호
    • /
    • pp.727-734
    • /
    • 2018
  • In this study, real-time absorption coefficients of carbonaceous species in $PM_{2.5}$ was observed using a dual-spot 7-wavelength Aethalometer between November 1, 2016 and December 31, 2017 at an urban site of Gwangju. In addition, 24-hr integrated $PM_{2.5}$ samples were simultaneously collected at the same site and analyzed for organic carbon and elemental carbon (OC and EC) using the thermal-optical transmittance protocol. A main objective of this study was to estimate mass absorption cross section (MAC) values of black carbon (BC) particles at the study site using the linear regression between aethalometer-based absorption coefficient and filter-based EC concentration. BC particles observed at 880 nm is mainly emitted from combustion of fossil fuels, and their concentration is typically reported as equivalent BC concentration (eBC). eBC concentration calculated using MAC value of $7.77m^2/g$ at wavelength of 880 nm, which was proposed by a manufacturer, ranged from 0.3 to $7.4{\mu}g/m^3$ with an average value of $1.9{\pm}1.2{\mu}g/m^3$, accounting for 7.3% (1.5~20.9%) of $PM_{2.5}$. The relationship between aerosol absorption coefficients at 880 nm and EC concentrations provided BC MAC value of $15.2m^2/g$, ranging from 11.4 to $16.2m^2/g$. The eBC concentrations calculated using the estimated MAC of $15.2m^2/g$ were significantly lower than those reported originally from aethalometer, and ranged from 0.2 to $3.8{\mu}g/m^3$, with an average of $1.0{\pm}0.6{\mu}g/m^3$, accounting for 3.7% of $PM_{2.5}$ (0.8~10.7%). Result from this study suggests that if the MAC value recommended by the manufacturer is applied to calculate the equivalent BC concentration and radiative forcing due to BC absorption, they would result in significant errors, implying investigation of an unique MAC value of BC particles at a study site.