• 제목/요약/키워드: Linear Synchronous Motor

검색결과 334건 처리시간 0.028초

영구자석형 리니어 유도 동기모터의 동기화에 관한 실험적 검토 (Synchronizing Characteristics of the Linear Induction Synchronous Motor)

  • 전우진;이주;전혜정;카미야 유우시
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.972-974
    • /
    • 2000
  • In this paper, we describe the starting and synchronizing methods in the linear induction synchronous motor. The proposed motor consists of one pair of linear synchronous motors (LSMs) and an additional linear induction motor (LIM). The primary cores have a common ring winding, and solid conductors are arranged in both LIM and LSM. From the investigation by analysis and experiment, we verify that the proposed motor is effective for practical use.

  • PDF

단열에 의한 동기식 리니어모터의 열특성 향상 (Improvement of the Thermal Characteristics of Synchronous Linear Motors Through Insulation)

  • 은인웅
    • 한국정밀공학회지
    • /
    • 제19권3호
    • /
    • pp.123-130
    • /
    • 2002
  • Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, heat sources of a synchronous linear motor with high velocity and force measured and analyzed. To improve the thermal characteristics of the linear motor, an insulation layer with low thermal conductivity is inserted between cooler and machine table. Some effects of the insulation layer are presented.

Ropeless 승강기용 영구자석여자 횡자속 선형전동기 설계에 관한 연구 (A Study on the Design of PM Exited Transverse Flux Linear Motor for Ropeless Elevator)

  • 강도현;방덕제;김종무;정연호;김문환
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권3호
    • /
    • pp.145-151
    • /
    • 2000
  • The topological investigations regarding magnetic circuit geometry and winding form of the transverse flux machine have brought up a variety of constructable arrangements with different features for several types of application[1, 2]. Here with, a novel PM-exited linear motor with inner mover, based on the transverse flux configuration leads to a considerable increase in power density for moving part. In this study we designed PM-exited transverse flux linear motor for ropeless elevator, whose output power density is higher and weight is lighter than conventional linear synchronous motors. When the designed motor in this study is applied to ropeless elevator, it is possible to increase power density more than 400% comparing with PM exited linear synchronous motor. The result of this study can be utilized for ropeless elevator or gearless direct linear moving system with high output[3].

  • PDF

Design of an Electromagnet with Low Detent Force and its Control for a Maglev Super-speed Vehicle

  • Lim, Jaewon;Kim, C.H.;Han, J.B.;Han, H.S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1667-1673
    • /
    • 2015
  • The vibration and noise caused by the dynamic interaction between electromagnetic suspension and the linear synchronous motor stator beneath a flexible guideway remain problems in designing attractive Maglev trains. One possible method to reduce the sources of vibration is to minimize the detent force in the linear synchronous motor that creates variations in both lift force and thrust. This paper proposes lowering detent force by using separated core instead of single united core. The magnet is designed to adapt to the deflected guideway at a speed of 550km/h. This study will analyze the electromagnetic field and control performance, and how they relate to lift forces and dynamic responses.

철심형 이동자와 고정자의 형상에 따른 영구자석 선형 동기전동기의 전자기력 특성 비교 및 피칭 모멘트 실험 (Comparison of Electromagnetic Force Characteristics and Experiment of Pitching Moment in Permanent Magnet Linear Synchronous Motor According to the Moving Iron Core and Stator Topology)

  • 이승한;조한욱;김경호;오정석
    • 전기학회논문지
    • /
    • 제64권12호
    • /
    • pp.1695-1702
    • /
    • 2015
  • This paper presents the characteristic analysis and experiment of force characteristics in permanent magnet linear synchronous motor for accuracy prediction of linear motion machine tools. In particular, the pitching moment resulting from attraction force ripple has been analysed and tested. Firstly, we analysed the characteristics of detent force, attraction force, and pitching moment in permanent magnet linear synchronous motor according to the design techniques such as auxiliary teeth, chamfering, and permanent magnet skewing. In addition, we suggested the experimental set for measurement of pitching moment. Finally, the results from measurement shows the good agreement with those obtained from finite element analysis results.

횡방향자속 선형동기전동기의 특성해석 (Characteristics Analysis of Transverse Flux Linear Synchronous Motor)

  • 윤선기;조윤현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.43-45
    • /
    • 1999
  • This paper is presented about the development of magnetic levitation conveyor with a transverse flux linear synchronous motor (TFLSM). The TFLSM is proposed as the new type linear motor for the conveyor driving system. The flux density distribution. the thrust and etc. of TFLSM are analyzed by the finite element method. To analyze the dynamic characteristics of TFLSM, the parameter of equivalent circuit is calculated by the analytical method.

  • PDF

초고속 자기부상열차용 선형 동기 전동기의 추력 및 부상력 특성 개선을 위한 연구 (The research to improve Thrust and Levitation Force characteristic of Linear Synchronous Motor for High-speed Maglev train)

  • 홍현석;오세영;한정호;이주
    • 조명전기설비학회논문지
    • /
    • 제28권6호
    • /
    • pp.75-84
    • /
    • 2014
  • A linear synchronous motor (Linear Synchronous Motor, under LSM) is suitable for Maglev train. This is 500km/h or more for running high-speed propulsion system of high-efficiency, high-output characteristics. Also, as high-speed running, it is needed solution to reduce output ripple component cause bad riding like noise and vibration. So this paper was designed 500km/h-class Maglev train and analyzed characteristics of the LSM base model using finite element analysis method. Further, improved model is designed to improve characteristics of thrust and levitation force by enforcing design parameters analysis and sensitivity analysis. And it was applied skew on field in order to reduce the ripple component still remaining. Skew interpretation of the two-dimensional is proposed and this is verified by carrying out three-dimensional finite element analysis comparing two values. It proved to be valid of skew of the two-dimensional analysis.

Topology Optimization of Linear Motor for Rope-less Elevator by Using Density Method and ON/OFF Method

  • Okamoto Yoshifumi;Takahashi Norio
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권3호
    • /
    • pp.233-237
    • /
    • 2005
  • The reduction of the ripple of driving force is especially required for the practical utilization of linear synchronous motor for rope-less elevator. In this paper, the magnetic region of the linear motor is optimized by using topology optimization techniques (density method and ON/OFF method) in order to reduce the ripple of driving force. The optimal results of both methods are compared, and useful information for the optimal design of linear motor is obtained.

고속.대추력 동기식 리니어모터 세컨더리 파트의 열특성 향상 (Improvement of the Thermal Behavior of the Secondary Part of Synchronous Linear Motors with High Speed and Thrust)

  • 은인웅
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.505-512
    • /
    • 2011
  • Linear permanent magnet synchronous motors utilize high-energy product permanent magnet to produce high thrust, velocity and acceleration. Such motors are finding applications requiring high positioning accuracy and speed response, for example, machine tools, in the absence of mechanical gears and ball screw systems. A disadvantage of the linear motors is high power loss in comparison with rotary motors. For the application of the linear motors to machine tools, it is required to use water coolers and to improve the thermal behavior through insulation and structure optimization or control strategies. This paper presents the function of the secondary part of the linear synchronous motor as to the thermal behavior and the improving method. The result shows cooling pipe combined with an insulation layer is a suitable design for improving of the thermal behavior.

Performance Evaluation of Slotless Permanent Magnet Linear Synchronous Motor Energized by Partially Excited Primary Current

  • Jung, Sang-Yong;Chun, Jang-Sung;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제11B권3호
    • /
    • pp.86-92
    • /
    • 2001
  • This paper is presented for evaluating the performance of slotless Permanent Magnet Linear Synchronous Motors (PMLSM) Which is energized by partially excited primary current. Especially the influence of end-effect due to the moving magnet is investigated in detail. Also partial excitation of primary current for better efficiency and its switching behavior are suggested Capability of PMLSM which is related to speed-force feasibility judging whether motor can meet the desired specifications in the dynamics are investigated. Furthermore control characteristics of PMLSM are considered to verify the validity of dynamic capability in running condition.