• Title/Summary/Keyword: Linear Structures

Search Result 2,409, Processing Time 0.025 seconds

Structure-Preserving Mesh Simplification

  • Chen, Zhuo;Zheng, Xiaobin;Guan, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4463-4482
    • /
    • 2020
  • Mesh model generated from 3D reconstruction usually comes with lots of noise, which challenges the performance and robustness of mesh simplification approaches. To overcome this problem, we present a novel method for mesh simplification which could preserve structure and improve the accuracy. Our algorithm considers both the planar structures and linear features. In the preprocessing step, it automatically detects a set of planar structures through an iterative diffusion approach based on Region Seed Growing algorithm; then robust linear features of the mesh model are extracted by exploiting image information and planar structures jointly; finally we simplify the mesh model with plane constraint QEM and linear feature preserving strategies. The proposed method can overcome the known problem that current simplification methods usually degrade the structural characteristics, especially when the decimation is extreme. Our experimental results demonstrate that the proposed method, compared to other simplification algorithms, can effectively improve the quality of mesh and yield an increased robustness on noisy input mesh.

Multi-Step Analysis of Seismically Isolated NPP Containment Structures with Lead-Rubber Bearings (납-고무받침에 의해 면진된 원전 격납구조물의 다중단계해석)

  • Lee, Jin Hi;Song, Jong-Keol;Lee, Eun-Haeng
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.261-269
    • /
    • 2014
  • In order to increase the seismic safety of nuclear power plant (NPP) structures in high seismicity regions, seismic isolation techniques can be adapted to NPP structures. In this paper, the applicability of multi-step analysis of seismically isolated NPP containment structures with lead-rubber bearings (LRB) is evaluated. The floor response spectrum of NPP containment structures with equivalent linear LRB and nonlinear LRB are compared. In addition, the force-displacement relationships for equivalent linear LRB and nonlinear LRB are compared.

An extended finite element method for modeling elastoplastic FGM plate-shell type structures

  • Jrad, Hanen;Mars, Jamel;Wali, Mondher;Dammak, Fakhreddine
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.299-312
    • /
    • 2018
  • In this paper, an extended finite element method is proposed to analyze both geometric and material non-linear behavior of general Functionally Graded Material (FGM) plate-shell type structures. A user defined subroutine (UMAT) is developed and implemented in Abaqus/Standard to study the elastoplastic behavior of the ceramic particle-reinforced metal-matrix FGM plates-shells. The standard quadrilateral 4-nodes shell element with three rotational and three translational degrees of freedom per node, S4, is extended in the present study, to deal with elasto-plastic analysis of geometrically non-linear FGM plate-shell structures. The elastoplastic material properties are assumed to vary smoothly through the thickness of the plate-shell type structures. The nonlinear approach is based on Mori-Tanaka model to underline micromechanics and locally determine the effective FGM properties and self-consistent method of Suquet for the homogenization of the stress-field. The elasto-plastic behavior of the ceramic/metal FGM is assumed to follow Ludwik hardening law. An incremental formulation of the elasto-plastic constitutive relation is developed to predict the tangent operator. In order to to highlight the effectiveness and the accuracy of the present finite element procedure, numerical examples of geometrically non-linear elastoplastic functionally graded plates and shells are presented. The effects of the geometrical parameters and the volume fraction index on nonlinear responses are performed.

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

Development of Analysis System for Asphalt Pavement Structures under Various Vehicle Speeds (차량 주행속도를 고려한 아스팔트 포장구조체의 해석시스템 구축)

  • Kim, Soo-Il;Seo, Joo-Won;Yoo, Young-Gyu;Choi, Jun-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.552-561
    • /
    • 2006
  • The purpose of this study is to propose a pavement analysis system which considers dynamic effects resulted from the various vehicle speeds. Vehicle loading effects were estimated by loading frequency and dynamic loads under various vehicle speeds. In addition, a proposed analysis model takes the non-linear temperature using a predictive model for dynamic modulus in asphalt layer and the non-linear stress in the unbound material. To examine adequacy of existing multi-layer elastic analysis of non-linear temperature in asphalt layer and non-linear stress conditions in unbound material, this study divided layers of asphalt pavement structures with 10 layers in asphalt, 2 layers in subbase and 1 layer in subgrade. In order to verify the pavement analysis system that considers various speeds, deflections of pavement calculated using ABAQUS, a three dimensional finite element program, were compared with the results of field tests under various speeds.

  • PDF

A Simple Syntax for Complex Semantics

  • Lee, Kiyong
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2002.02a
    • /
    • pp.2-27
    • /
    • 2002
  • As pact of a long-ranged project that aims at establishing database-theoretic semantics as a model of computational semantics, this presentation focuses on the development of a syntactic component for processing strings of words or sentences to construct semantic data structures. For design arid modeling purposes, the present treatment will be restricted to the analysis of some problematic constructions of Korean involving semi-free word order, conjunction arid temporal anchoring, and adnominal modification and antecedent binding. The present work heavily relies on Hausser's (1999, 2000) SLIM theory for language that is based on surface compositionality, time-linearity arid two other conditions on natural language processing. Time-linear syntax for natural language has been shown to be conceptually simple and computationally efficient. The associated semantics is complex, however, because it must deal with situated language involving interactive multi-agents. Nevertheless, by processing input word strings in a time-linear mode, the syntax cart incrementally construct the necessary semantic structures for relevant queries and valid inferences. The fragment of Korean syntax will be implemented in Malaga, a C-type implementation language that was enriched for both programming and debugging purposes arid that was particluarly made suitable for implementing in Left-Associative Grammar. This presentation will show how the system of syntactic rules with constraining subrules processes Korean sentences in a step-by-step time-linear manner to incrementally construct semantic data structures that mainly specify relations with their argument, temporal, and binding structures.

  • PDF

Evaluation of Progressive Collapse Resisting Capacity of Tall Buildings

  • Kwon, Kwangho;Park, Seromi;Kim, Jinkoo
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.229-235
    • /
    • 2012
  • In this paper the progressive collapse potential of building structures designed for real construction projects were evaluated based on arbitrary column removal scenario using various alternate path methods specified in the GSA guidelines. The analysis model structures are a 22-story reinforced concrete moment frames with core wall building and a 44-story interior concrete core and exterior steel diagrid structure. The progressive collapse resisting capacities of the model structures were evaluated using the linear static, nonlinear static, and nonlinear dynamic analyses. The linear static analysis results showed that progressive collapse occurred in the 22-story model structure when an interior column was removed. However the structure turned out to be safe according to the nonlinear static and dynamic analyses. Similar results were observed in the 44-story diagrid structure. Based on the analysis results, it was concluded that, compared with nonlinear analysis procedures, the linear static method is conservative in the prediction of progressive collapse resisting capacity of building structure based on arbitrary column removal scenario.

An improved Kalman filter for joint estimation of structural states and unknown loadings

  • He, Jia;Zhang, Xiaoxiong;Dai, Naxin
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.209-221
    • /
    • 2019
  • The classical Kalman filter (KF) provides a practical and efficient way for state estimation. It is, however, not applicable when the external excitations applied to the structures are unknown. Moreover, it is known the classical KF is only suitable for linear systems and can't handle the nonlinear cases. The aim of this paper is to extend the classical KF approach to circumvent the aforementioned limitations for the joint estimation of structural states and the unknown inputs. On the basis of the scheme of the classical KF, analytical recursive solution of an improved KF approach is derived and presented. A revised form of observation equation is obtained basing on a projection matrix. The structural states and the unknown inputs are then simultaneously estimated with limited measurements in linear or nonlinear systems. The efficiency and accuracy of the proposed approach is verified via a five-story shear building, a simply supported beam, and three sorts of nonlinear hysteretic structures. The shaking table tests of a five-story building structure are also employed for the validation of the robustness of the proposed approach. Numerical and experimental results show that the proposed approach can not only satisfactorily estimate structural states, but also identify unknown loadings with acceptable accuracy for both linear and nonlinear systems.

Non-linear study of mode II delamination fracture in functionally graded beams

  • Rizov, Victor I.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.263-271
    • /
    • 2017
  • A theoretical study was carried-out of mode II delamination fracture behavior of the End Loaded Split (ELS) functionally graded beam configuration with considering the material non-linearity. The mechanical response of ELS was modeled analytically by using a power-law stress-strain relation. It was assumed that the material is functionally graded transversally to the beam. The non-linear fracture was investigated by using the J-integral approach. Equations were derived for the crack arm curvature and zero axes coordinate that are needed for the J-integral solution. The analysis developed is valid for a delamination crack located arbitrary along the beam height. The J-integral solution was verified by analyzing the strain energy release rate with considering material non-linearity. The effects of material gradient, non-linear material behavior and crack location on the fracture were evaluated. The solution derived is suitable for parametric analyses of non-linear fracture. The results obtained can be used for optimization of functionally graded beams with respect to their mode II fracture performance. Also, such simplified analytical models contribute for the understanding of delamination fracture in functionally graded beams exhibiting material non-linearity.

Genetic algorithm based optimum design of non-linear steel frames with semi-rigid connections

  • Hayalioglu, M.S.;Degertekin, S.O.
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.453-469
    • /
    • 2004
  • In this article, a genetic algorithm based optimum design method is presented for non-linear steel frames with semi-rigid connections. The design algorithm obtains the minimum weight frame by selecting suitable sections from a standard set of steel sections such as European wide flange beams (i.e., HE sections). A genetic algorithm is employed as optimization method which utilizes reproduction, crossover and mutation operators. Displacement and stress constraints of Turkish Building Code for Steel Structures (TS 648, 1980) are imposed on the frame. The algorithm requires a large number of non-linear analyses of frames. The analyses cover both the non-linear behaviour of beam-to-column connection and $P-{\Delta}$ effects of beam-column members. The Frye and Morris polynomial model is used for modelling of semi-rigid connections. Two design examples with various type of connections are presented to demonstrate the application of the algorithm. The semi-rigid connection modelling results in more economical solutions than rigid connection modelling, but it increases frame drift.