• 제목/요약/키워드: Linear Space Algorithm

검색결과 325건 처리시간 0.027초

가시화 기반 N-body GPU 충돌 체크 방법 (Visibility based N-Body GPU Collision Detection)

  • 성만규
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.400-403
    • /
    • 2022
  • 본 논문은 가시화 기반 LBVH(Linear Bounding Volume Hierarchy))을 이용한 빠른 GPU기반 N-body 충돌 체크 알고리즘을 제안한다. 본 알고리즘은 움직이는 n-body 개체에 대한 수정된 모튼코드(Morton code)를 이용하며, 이 모튼코드는, 일반적으로 사용되는 개체의 위치 정보뿐 아니라 이 개체가 스크린상에 차지하는 가시화 영역 정보를 이용하기 때문에, 카메라의 위치 및 방향에 따라 화면상에 차지하는 영역이 작은 개체에 대한 빠른 GPU기반 정렬(sorting)이 가능하게 된다. 실험을 통해, 본 논문에서 제안하는 방법이 기존 방법보다 15%이상 성능 향상이 있음을 알게 되었다

  • PDF

복수의 동적 장애물에 대한 이동로봇의 최적경로설계 (Optimal Path Planning of Mobile Robot for Multiple Moving Obstacles)

  • 김대광;강동중
    • 로봇학회논문지
    • /
    • 제2권2호
    • /
    • pp.183-190
    • /
    • 2007
  • The most important thing for navigation of a mobile robot is to find the most suitable path and avoid the obstacles in the static and dynamic environment. This paper presents a method to search the optimal path in start space extended to time domain with considering a velocity and a direction of moving obstacles. A modified version of $A^*$ algorithm has been applied for path planning in this work and proposed a method of path search to avoid a collision with moving obstacle in space-tim domain with a velocity and an orientation of obstacles. The velocity and the direction for moving obstacle are assumed as linear form. The simulation result shows that a mobile robot navigates safely among moving obstacles of constant linear velocity. This work can be applied for not only a moving robot but also a legged humanoid robot and all fields where the path planning is required.

  • PDF

Reconfiguration of Redundant Thrusters by Allocation Method

  • Jin, Jae-Hyun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제6권2호
    • /
    • pp.76-83
    • /
    • 2005
  • Thrusters are important actuators where air is rare. Since the maintenance or replacement of thrusters is not easy in such an environment, a thrusting system must be highly reliable. Redundant thrusters are used to meet the reliability requirement. In this paper, a reconfiguration problem for those redundant thrusters is discussed, especially the management or distribution logic of redundant thrusters is focused on. The logic has to be changed if faults occur at thrusters. Reconfiguration is to change the distribution logic to accommodate thrusters' faults. The authors propose a reconfiguration algorithm based on the linear programming method. The authors define the reconfiguration problem as an optimization problem. The performance index is a quantity related with total fuel consumption by thrusters. This algorithm can accommodate multiple faults. Numerical examples are given to show the advantage of the proposed algorithm over existing methods.

최적 배치를 위한 유전자 알고리즘의 설계와 구현 (Design and Implementation of a Genetic Algorithm for Optimal Placement)

  • 송호정;이범근
    • 한국컴퓨터정보학회논문지
    • /
    • 제7권3호
    • /
    • pp.42-48
    • /
    • 2002
  • 배치(Placement)는 VLSI 회로의 physical design에서 중요한 단계로서 회로의 성능을 최대로 하기 위하여 회로 모듈의 집합을 배치시키는 문제이며, 배치 문제에서 최적의 해를 얻기 위해 클러스터 성장(cluster growth), 시뮬레이티드 어닐링(simulated annealing; SA), ILP(integer linear programming)등의 방식이 이용된다. 본 논문에서는 배치 문제에 대하여 유전자 알고리즘(genetic algorithm; GA)을 이용한 해 공간 탐색(solution space search) 방식을 제안하였으며, 제안한 방식을 시뮬레이티드 어닐링 방식과 비교, 분석하였다.

  • PDF

CNC 공작기계의 3차원 직선 및 원호 보간 알고리즘에 관한 연구 (3D Linear and Circular Interpolation Algorithm for CNC Machines)

  • 양민양;홍원표
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.172-178
    • /
    • 1999
  • 3D linear and circular interpolations are a basic part for the machining of complex shapes. Until now, because of the absence of appropriate algorithms for the generation of 3D lines and circles, a full accomplishment for available machine tool resolution is difficult. this paper presents new algorithms for 3D linear and circular interpolation in the reference pulse technique. In 3D space, the line or circle is not expressed as an implicit function, it is only defined as the intersection of two surfaces. A 3D line is defined as the intersection of two planes, and a 3D circle is defined as the intersection of a plane and the surface of a sphere. Based on these concepts, interpolation algorithms are designed to follow intersection curves in 3D space, and a real-time 3D linear and circular interpolator was developed in software using a PC. The algorithm implemented in a PC showed promising results in interpolation error and speed performance. It is expected that it can be applied to the next generation computerized numerical control systems for the machining of 3D lines, circles and some other complex shapes.

  • PDF

Attitude Control of Planar Space Robot based on Self-Organizing Data Mining Algorithm

  • Kim, Young-Woo;Matsuda, Ryousuke;Narikiyo, Tatsuo;Kim, Jong-Hae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.377-382
    • /
    • 2005
  • This paper presents a new method for the attitude control of planar space robots. In order to control highly constrained non-linear system such as a 3D space robot, the analytical formulation for the system with complex dynamics and effective control methodology based on the formulation, are not always obtainable. In the proposed method, correspondingly, a non-analytical but effective self-organizing modeling method for controlling a highly constrained system is proposed based on a polynomial data mining algorithm. In order to control the attitude of a planar space robot, it is well known to require inputs characterized by a special pattern in time series with a non-deterministic length. In order to correspond to this type of control paradigm, we adopt the Model Predictive Control (MPC) scheme where the length of the non-deterministic horizon is determined based on implementation cost and control performance. The optimal solution to finding the size of the input pattern is found by a solving two-stage programming problem.

  • PDF

RMESH 구조에서의 선형 사진트리 구축을 위한 상수 시간 알고리즘 (Constant Time Algorithm for Building the Linear Quadtree on RMESH)

  • 공헌택;우진운
    • 한국정보처리학회논문지
    • /
    • 제4권9호
    • /
    • pp.2247-2258
    • /
    • 1997
  • 계층적 자료구조인 사진트리는 이진 영상을 표현하는데 매우 중요한 자료구조이다. 사진트리를 메모리에 저장하는 방법 중 선형 사진트리 표현 방법은 다른 표현 방법과 비교할 때 저장 공간을 매우 효율적으로 절약할 수 있는 이점이 있으나, 이를 구축하기 위해서는 복잡하고 시간이 많이 걸린다. 본 논문에서는 RMESH 구조에서 3-차원 $n{\times}n{\times}n$ 프로세서를 사용하여 $n{\times}n$ 이진 영상을 O(1)시간에 선형 사진트리를 구축하는 알고리즘을 제안하였다. 제안한 알고리즘은 시간 복잡도 O(1)을 갖는 합병 알고리즘과 기존의 O(1) 정렬 알고리즘을 사용함으로써 PARBUS 구조에서 제안된 알고리즘보다 간단하고 쉽게 이해할 수 있는 장점이 있다.

  • PDF

장애물의 기하투영에 의한 일차매개곡선을 이용한 충돌회피 경로계획 (A collision-free path planning using linear parametric curve based on geometry mapping of obstacles)

  • 남궁인
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.1992-2007
    • /
    • 1997
  • A new algorithm for planning a collision-free path is developed based on linear prametric curve. In this paper robot is assumed to a point, and two linear parametric curve is used to construct a path connecting start and goal point, in which single intermediate connection point between start and goal point is considered. The intermediate connection point is set in polar coordinate(${\theta}{\delta}$) , and the interference between path and obstacle is mapped into CPS(connection point space), which is defined a CWS GM(circular work space geometry mapping). GM of all obstacles in workspace creates overlapping images of obstacle in CPS(Connection Point Space). The GM for all obstacles produces overlapping images of obstacle in CPS. The empty area of CPS that is not occupied by obstacle images represents collision-free paths in Euclidian Space. A GM based on connection point in elliptic coordinate(${\theta}{\delta}$) is also developed in that the total length of path is depend only on the variable .delta.. Hence in EWS GM(elliptic work space geometry mapping), increasing .delta. and finding the value of .delta. for collision-free path, the shortest path can be searched without carring out whole GM. The GM of obstacles expersses all possible collision-free path as empty spaces in CPS. If there is no empty space available in CPS, it indicates that path planning is not possible with given number of connection points, i.e. path planning is failed, and it is necessary to increase the number of connection point. A general case collision-free path planning is possible by appling GM to configuration space obstacles. Simulation of GM of obstacles in Euclidian space is carried out to measure performance of algorithm and the resulting obstacle images are reported.

A geometric approach to fault diagnosis algorithm in linear systems

  • Kim, Jee-Hong;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1216-1221
    • /
    • 1990
  • An algorithm for multiple fault diagnosis of linear dynamic systems is proposed. The algorithm is constructed by using of the geometric approach based on observation that, when the number of faulty units of the system is known, the set of faulty units can be differentiated from other sets by checking linear varieties in the measurement data space. It is further shown that the system with t number of faults can be diagnosed within (t+1) sample-time units if the input-output measurements are rich and that the algorithm can be used for diagnosis even when the number of faults is not known in advance.

  • PDF

THE INDEFINITE LANCZOS J-BIOTHOGONALIZATION ALGORITHM FOR SOLVING LARGE NON-J-SYMMETRIC LINEAR SYSTEMS

  • KAMALVAND, MOJTABA GHASEMI;ASIL, KOBRA NIAZI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제24권4호
    • /
    • pp.375-385
    • /
    • 2020
  • In this paper, a special indefinite inner product, named hyperbolic scalar product, is used and all acquired results have been raised and proved with the proviso that the space is equipped with this indefinite scalar product. The main objective is to be introduced and applied an indefinite oblique projection method, called Indefinite Lanczos J-biorthogonalizatiom process, which in addition to building a pair of J-biorthogonal bases for two used Krylov subspaces, leads to the introduction of a process for solving large non-J-symmetric linear systems, i.e., Indefinite two-sided Lanczos Algorithm for Linear systems.