• 제목/요약/키워드: Linear Regression

검색결과 4,949건 처리시간 0.032초

Support Vector Machine for Interval Regression

  • Hong Dug Hun;Hwang Changha
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2004년도 학술발표논문집
    • /
    • pp.67-72
    • /
    • 2004
  • Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate interval linear and nonlinear regression models combining the possibility and necessity estimation formulation with the principle of SVM. For data sets with crisp inputs and interval outputs, the possibility and necessity models have been recently utilized, which are based on quadratic programming approach giving more diverse spread coefficients than a linear programming one. SVM also uses quadratic programming approach whose another advantage in interval regression analysis is to be able to integrate both the property of central tendency in least squares and the possibilistic property In fuzzy regression. However this is not a computationally expensive way. SVM allows us to perform interval nonlinear regression analysis by constructing an interval linear regression function in a high dimensional feature space. In particular, SVM is a very attractive approach to model nonlinear interval data. The proposed algorithm here is model-free method in the sense that we do not have to assume the underlying model function for interval nonlinear regression model with crisp inputs and interval output. Experimental results are then presented which indicate the performance of this algorithm.

  • PDF

MOISTURE CONTENT MEASUREMENT OF POWDERED FOOD USING RF IMPEDANCE SPECTROSCOPIC METHOD

  • Kim, K. B.;Lee, J. W.;S. H. Noh;Lee, S. S.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.II
    • /
    • pp.188-195
    • /
    • 2000
  • This study was conducted to measure the moisture content of powdered food using RF impedance spectroscopic method. In frequency range of 1.0 to 30㎒, the impedance such as reactance and resistance of parallel plate type sample holder filled with wheat flour and red-pepper powder of which moisture content range were 5.93∼-17.07%w.b. and 10.87 ∼ 27.36%w.b., respectively, was characterized using by Q-meter (HP4342). The reactance was a better parameter than the resistance in estimating the moisture density defined as product of moisture content and bulk density which was used to eliminate the effect of bulk density on RF spectral data in this study. Multivariate data analyses such as principal component regression, partial least square regression and multiple linear regression were performed to develop one calibration model having moisture density and reactance spectral data as parameters for determination of moisture content of both wheat flour and red-pepper powder. The best regression model was one by the multiple linear regression model. Its performance for unknown data of powdered food was showed that the bias, standard error of prediction and determination coefficient are 0.179% moisture content, 1.679% moisture content and 0.8849, respectively.

  • PDF

호우피해자료에서의 고차원 자료 및 다중공선성 문제를 해소한 회귀모형 개발 (Development of Regression Models Resolving High-Dimensional Data and Multicollinearity Problem for Heavy Rain Damage Data)

  • 김정환;박지현;최창현;김형수
    • 대한토목학회논문집
    • /
    • 제38권6호
    • /
    • pp.801-808
    • /
    • 2018
  • 선형회귀모형의 학습은 일반적으로 자료의 개수가 설명변수의 개수보다 충분히 크고, 설명변수들 사이에 심각한 다중공선성이 없다는 가정 하에서 안정적으로 이루어진다. 본 연구에서는 이러한 가정이 위배되었을 경우 모형 학습의 어려움을 실제 호우피해자료를 분석함으로써 조명하였고, 이를 해결하기 위해 자료를 통합한 다음 주성분회귀모형 또는 능형회귀모형을 사용할 것을 검토하였다. 모형의 학습에 사용된 자료와 별도의 독립된 자료에서 제안된 모형들의 예측력을 평가하였고, 제안된 방법이 선형회귀모형보다 더 나은 예측력을 보이는 것을 확인하였다.

A Study on Detection of Influential Observations on A Subset of Regression Parameters in Multiple Regression

  • Park, Sung Hyun;Oh, Jin Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제9권2호
    • /
    • pp.521-531
    • /
    • 2002
  • Various diagnostic techniques for identifying influential observations are mostly based on the deletion of a single observation. While such techniques can satisfactorily identify influential observations in many cases, they will not always be successful because of some mask effect. It is necessary, therefore, to develop techniques that examine the potentially influential effects of a subset of observations. The partial regression plots can be used to examine an influential observation for a single parameter in multiple linear regression. However, it is often desirable to detect influential observations for a subset of regression parameters when interest centers on a selected subset of independent variables. Thus, we propose a diagnostic measure which deals with detecting influential observations on a subset of regression parameters. In this paper, we propose a measure M, which can be effectively used for the detection of influential observations on a subset of regression parameters in multiple linear regression. An illustrated example is given to show how we can use the new measure M to identify influential observations on a subset of regression parameters.

다중회귀분석에 의한 하천 월 유출량의 추계학적 추정에 관한 연구 (A Study on Stochastic Estimation of Monthly Runoff by Multiple Regression Analysis)

  • 김태철;정하우
    • 한국농공학회지
    • /
    • 제22권3호
    • /
    • pp.75-87
    • /
    • 1980
  • Most hydro]ogic phenomena are the complex and organic products of multiple causations like climatic and hydro-geological factors. A certain significant correlation on the run-off in river basin would be expected and foreseen in advance, and the effect of each these causual and associated factors (independant variables; present-month rainfall, previous-month run-off, evapotranspiration and relative humidity etc.) upon present-month run-off(dependent variable) may be determined by multiple regression analysis. Functions between independant and dependant variables should be treated repeatedly until satisfactory and optimal combination of independant variables can be obtained. Reliability of the estimated function should be tested according to the result of statistical criterion such as analysis of variance, coefficient of determination and significance-test of regression coefficients before first estimated multiple regression model in historical sequence is determined. But some error between observed and estimated run-off is still there. The error arises because the model used is an inadequate description of the system and because the data constituting the record represent only a sample from a population of monthly discharge observation, so that estimates of model parameter will be subject to sampling errors. Since this error which is a deviation from multiple regression plane cannot be explained by first estimated multiple regression equation, it can be considered as a random error governed by law of chance in nature. This unexplained variance by multiple regression equation can be solved by stochastic approach, that is, random error can be stochastically simulated by multiplying random normal variate to standard error of estimate. Finally hybrid model on estimation of monthly run-off in nonhistorical sequence can be determined by combining the determistic component of multiple regression equation and the stochastic component of random errors. Monthly run-off in Naju station in Yong-San river basin is estimated by multiple regression model and hybrid model. And some comparisons between observed and estimated run-off and between multiple regression model and already-existing estimation methods such as Gajiyama formula, tank model and Thomas-Fiering model are done. The results are as follows. (1) The optimal function to estimate monthly run-off in historical sequence is multiple linear regression equation in overall-month unit, that is; Qn=0.788Pn+0.130Qn-1-0.273En-0.1 About 85% of total variance of monthly runoff can be explained by multiple linear regression equation and its coefficient of determination (R2) is 0.843. This means we can estimate monthly runoff in historical sequence highly significantly with short data of observation by above mentioned equation. (2) The optimal function to estimate monthly runoff in nonhistorical sequence is hybrid model combined with multiple linear regression equation in overall-month unit and stochastic component, that is; Qn=0. 788Pn+0. l30Qn-1-0. 273En-0. 10+Sy.t The rest 15% of unexplained variance of monthly runoff can be explained by addition of stochastic process and a bit more reliable results of statistical characteristics of monthly runoff in non-historical sequence are derived. This estimated monthly runoff in non-historical sequence shows up the extraordinary value (maximum, minimum value) which is not appeared in the observed runoff as a random component. (3) "Frequency best fit coefficient" (R2f) of multiple linear regression equation is 0.847 which is the same value as Gaijyama's one. This implies that multiple linear regression equation and Gajiyama formula are theoretically rather reasonable functions.

  • PDF

Clustering Observations for Detecting Multiple Outliers in Regression Models

  • Seo, Han-Son;Yoon, Min
    • 응용통계연구
    • /
    • 제25권3호
    • /
    • pp.503-512
    • /
    • 2012
  • Detecting outliers in a linear regression model eventually fails when similar observations are classified differently in a sequential process. In such circumstances, identifying clusters and applying certain methods to the clustered data can prevent a failure to detect outliers and is computationally efficient due to the reduction of data. In this paper, we suggest to implement a clustering procedure for this purpose and provide examples that illustrate the suggested procedure applied to the Hadi-Simonoff (1993) method, reverse Hadi-Simonoff method, and Gentleman-Wilk (1975) method.

Detection of Change-Points by Local Linear Regression Fit;

  • Kim, Jong Tae;Choi, Hyemi;Huh, Jib
    • Communications for Statistical Applications and Methods
    • /
    • 제10권1호
    • /
    • pp.31-38
    • /
    • 2003
  • A simple method is proposed to detect the number of change points and test the location and size of multiple change points with jump discontinuities in an otherwise smooth regression model. The proposed estimators are based on a local linear regression fit by the comparison of left and right one-side kernel smoother. Our proposed methodology is explained and applied to real data and simulated data.

Statistical notes for clinical researchers: simple linear regression 3 - residual analysis

  • Kim, Hae-Young
    • Restorative Dentistry and Endodontics
    • /
    • 제44권1호
    • /
    • pp.11.1-11.8
    • /
    • 2019
  • In the previous sections, simple linear regression (SLR) 1 and 2, we developed a SLR model and evaluated its predictability. To obtain the best fitted line the intercept and slope were calculated by using the least square method. Predictability of the model was assessed by the proportion of the explained variability among the total variation of the response variable. In this session, we will discuss four basic assumptions of regression models for justification of the estimated regression model and residual analysis to check them.

A GENERALIZED MODEL-BASED OPTIMAL SAMPLE SELECTION METHOD

  • Hong, Ki-Hak;Lee, Gi-Sung;Son, Chang-Kyoon
    • Journal of applied mathematics & informatics
    • /
    • 제9권2호
    • /
    • pp.807-815
    • /
    • 2002
  • We consider a more general linear regression super-population model than the one of Chaudhuri and Stronger(1992) . We can find the same type of the best linear unbiased(BLU) predictor as that of Chaudhuri and Stenger and see that the optimal design is again a purposive one which prescribes choosing one of the samples of size n which has $\chi$ closest to $\bar{X}$.

Analysis of Linear Regression Model with Two Way Correlated Errors

  • Ssong, Seuck-Heun
    • Journal of the Korean Statistical Society
    • /
    • 제29권2호
    • /
    • pp.231-245
    • /
    • 2000
  • This paper considers a linear regression model with space and time data in where the disturbances follow spatially correlated error components. We provide the best linear unbiased predictor for the one way error components. We provide the best linear unbiased predictor for the one way error component model with spatial autocorrelation. Further, we derive two diagnostic test statistics for the assessment of model specification due to spatial dependence and random effects as an application of the Lagrange Multiplier principle.

  • PDF