• Title/Summary/Keyword: Linear Motor Linear Actuator

Search Result 144, Processing Time 0.032 seconds

A Study on The Novel Structured 3-DOF Spherical Motor (새로운 3-자유도 구형 모터에 관한 연구)

  • Lee, Dong-Cheol;Kim, Dae-Kyong;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1362-1370
    • /
    • 2008
  • This paper describes the design and characteristic analysis of a novel 3-DOF(Degree of Freedom) spherical motor. For multi DOF actuating, several numbers of motors have been used. By the using of normal motors they connected each other in single joint, is necessary to a several type of complex power transmission devices. The 3-DOF spherical motor can drive roll, pitch, and yaw motion in only one unit and it is not necessary to use additional gears and links parts. Therefore the using of 3-DOF spherical motor can eliminate; combined effects of inertia, backlash, non-linear friction, and elastic deformation of gears. In this paper, we propose the novel structured 3-DOF spherical motor and derive its principles of operation. Firstly, we designed concept model of novel structured 3-DOF spherical motor. Next, we derive the control method by calculating the currents. Also, to have intuitive driving control, we express the rotor position in equivalent angle-axis system and determine the exciting period of currents from the calculation result of the currents. To verify the control method, we calculated the currents by the position of rotor. and then we analyzed the characteristics by 3D Finite Element Method when the calculated currents are excited.

Electromagnetic Actuator for Active Vibration Control of Precise System (초정밀 시스템의 능동 진동제어용 전자기 액츄에이터)

  • Lee, Joo-Hoon;Jeon, Jeong-Woo;Hwang, Don-Ha;Kang, Dong-Sik;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.228-230
    • /
    • 2005
  • In this paper, we address an active vibration control system, which suppresses the vibration engaged by magnetically levitated stage. The stage system consists of a levitating platen with four permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion via the vertical and horizontal forces. In the stage system, which represents the settling-time critical system, the motion of the platen vibrates mechanically. We designed an active vibration control system for suppressing vibration due to the stage moving. The command feedforward with inertial feedback algorithm is used for solving stage system's critical problems. The components of the active vibration control system are accelerometers for detecting stage tables's vibrations, a digital controller with high precise signal converters. and electromagnetic actuators.

  • PDF

Dynamic modeling and system identification for a MMAM controlled flexible manipulator

  • Nam, Yoonsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.592-598
    • /
    • 1992
  • For a high bandwidth, accurate end of arm motion control with good disturbance rejection, the, Momentum Management Approach to Motion control (MMAM) is proposed. The MMAM is a kind of position control technique that uses inertial forces, applied at or near the end of arm to achieve, high bandwidth and accuracy in movement and in the face of force disturbances. To prove the concept of MMAM, the, end point, control of a flexible manipulator is considered. For this purpose, a flexible beam is mounted on the x-y table, and the MMAM actuator is attached on the top of the flexible beam. A mathematical model is developed for the flexible, beam being controlled by the, MMAM actuator and slide base DC motor. A system identification method is applied to estimate some system parameters in the, model which can not be determined because of the complexity of the mechanism. For the end point, control of the. flexible beam, the, optimal linear output feedback control is introduced.

  • PDF

Design of an 1 DOF Assistive Knee Joint for a Gait Rehabilitation Robot (보행 재활 로봇 개발을 위한 1자유도 무릎 관절 설계)

  • Lee, Sanghyeop;Shin, Sung Yul;Lee, Jun Won;Kim, Changhwan
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.8-19
    • /
    • 2013
  • One of the important issues for structural and electrical specifications in developing a robot is to determine lengths of links and motor specifications, which need to be appropriate to the purpose of robot. These issues become more critical for a gait rehabilitation robot, since a patient wears the robot. Prior to developing an entire gait rehabilitation robot, designing of a 1DOF assistive knee joint of the robot is considered in this paper. Human gait motions were used to determine an allowable range of knee joint that was rotated with a linear type actuator (ball-screw type) and links. The lengths of each link were determined by using an optimization process, minimizing the stroke of actuator and the total energy (kinetic and potential energy). Kinetic analysis was performed in order to determine maximum rotational speed and maximum torque of the motor for tracking gait trajectory properly. The prototype of 1 DOF assistive knee joint was built and examined with a impedance controller.

Design and Control of Ultra-precision Dual Stage with Air bearings and Voice coil motor for nm scanning system (나노 정밀도 스캐닝 용 공기베어링과 보이스 코일 모터의 초정밀 이중 스테이지 설계 및 제어)

  • Kim K.H.;Choi Y.M.;Kim J.J.;Lee M.G.;Lee S.W.;Gweon D.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1883-1886
    • /
    • 2005
  • In this paper, a decoupled dual servo (DDS) stage for ultra-precision scanning system with large working range is introduced. In general, dual servo systems consist of a fine stage for short range and a coarse stage for long range. The proposed DDS also consists of a $XY\theta$ fine stage for handling and carrying workpieces and one axis coarse stage. Its coarse stage consists of air bearing guide system and a coreless linear motor with force ripple. The fine has four voice coil motors(VCM) as its actuator. According to a VCM's nature, there are no mechanical connections between coils and magnetic circuits. Moreover, VCM doesn't have force ripples due to imperfections of commutation components of linear motor systems - currents and flux densities. However, due to the VCM's mechanical constraints the working range of the fine is about $25mm^2$. To break that hurdle, the coarse stage with linear motors is used to move the fine about 500mm. Because of the above reasons, the proposed DDS can achieve higher precision scanning than other stages with only one servo. With MATLAB's Sequential Quadratic Programming (SQP), the VCMs are optimally designed for the highest force under conditions and constraints such as thermal dissipations due to its coil, its size, and so on. And for their movements without any frictions, guide systems of the DDS are composed of air bearings. To get precisely their positions, a linear scale with 5nm resolution are used for the coarse stage's motion and three plane mirror laser interferometers with 5nm for the fine's $XY\theta$ motions. With them, on scanning the two stages have same trajectories. The control algorithm is named Parallel method. The embodied ultra-precision scanning system has sub 100nm following error and in-positioning stability.

  • PDF

Characteristics of V-type Ultrasonic Motor with the Change Angle of Legs (Leg-angle 변화에 따른 V-type 초음파모터의 특성)

  • Jeong, Seong-Su;Park, Min-Ho;Kim, Jong-Wook;Park, Choong-Hyo;Chong, Hyon-Ho;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.320-320
    • /
    • 2010
  • In the case of existing ultrasonic motors, they have characteristics such as outstanding response speed, speed and high efficiency. However, it's very hard to use practically them as small motors due to complicated structure and expensive cost. This paper proposed v-type ultrasonic linear motor. Stator of the motor is composed of thin elastic body and four ceramics attached to upper and bottom areas of the body. The ceramics have each direction of polarization. When two harmonic voltages which had $90^{\circ}$ phase difference were applied to the ceramics, the symmetric and anti-symmetric displacements were generated at the tip to make the elliptical motion. To find out a model that generates maximum displacement at contact tip, FEM program was used with change of leg-angle. In addition, optimal model was chosen by considering magnitude and shape of displacement according to change of frequency.

  • PDF

Design of a DSP Controller and Driver for the Power-by-wire(PBW) Driving System Using BLDC Servo Motor Pump (BLDC 서보 모터 펌프를 이용하는 직동력(PBW) 구동시스템의 DSP 제어기 및 구동기 설계)

  • Joo, Jae-Hun;Sim, Dong-Seouk;Choi, Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1207-1212
    • /
    • 2011
  • This paper presents a study on the DSP(Digital Signal Processor) controller for the PBW(power-by-wire) system using BLDC(Brushless Direct Current) servo motor pump. The PBW hydraulic actuator was realized with hydraulic pump driven by BLDC servo motor, hydraulic cylinder and controller. This PBW system needs speed control of servo motor for linear thrust action of hydraulic cylinder. This paper implements a servo controller with vector control algorithm and MIN-MAX PWM technique. As CPU of a controller, TMS320F2812 DSP was adopted because it has PWM waveform generator, A/D converter, SPI(Serial Peripheral Interface) port and many input/output port etc.

A Study on the Structural System and Implementation of Cantilever Actuator System (외팔보 엑츄에이터 시스템 구조 및 구현에 관한 연구)

  • Yoon, Keun-Young;Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.651-656
    • /
    • 2019
  • This paper is a study on the structure system and implementation of cantilever actuator for decontamination. There are many kinds of exterior materials that attach to the exterior walls of a building. Glass, in particular, can be contaminated in a short period of time due to external exposure. The pollutants like this damage the appearance of a building. It can also cause health problems for users, and dust attached to solar panels creates problems that greatly reduce the power generation of solar panels. In order to remove such contaminants, professional workers usually remove contaminants attached to the outer walls. However, even with stability, accidents are often caused by a number of unexpected variables that occur in the field. Thus, to overcome these shortcomings, the cantilever actuator structure system was proposed. The system was designed through research. Then, we made a cantilever actuator and checked its operability. Finally, the effectiveness of the cantilever actuator was reviewed.

Development & properties of 30W Linear Motor with Resonance Spring for Linear Actuator (30W 선형전동기를 이용한 공진구동형 액추에이터 제작과 특성)

  • Woo, Byung-Chul;Hong, Do-Kwan;Kim, Jong-Moo;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.744-745
    • /
    • 2008
  • IT기기, 통신시기, 반도체 기기 등은 점점 더 고성능화되면서 속도도 빨라지고 기능도 추가되는 추세이다. 이러한 IT기기들은 속도와 더불어 열문제는 더욱더 크게 강조되고 있는 실정이며 개인용으로 많이 사용하고 있는 PC의 경우 더 이상 속도를 높이지 못하고 있는 실정이다. 이러한 열문제는 100W까지는 Heat pipe 등으로 냉각이 가능하였으나 거의 한계수준에 도달한 상황이다. 이러한 상황에서 일부 메니아들은 빠른 속도의 통신이나 작업을 위해서 수냉식 전용 냉각기를 설치하여 현재의 기능보다 더 좋은 환경에서 사용하고자 하고 있다. 본 연구에서는 수냉식 냉각기보다 더 큰 열용량을 가진 CPU의 냉각을 위해서 냉매 압축기를 적용하고자 하였으며 냉매 압축기에 사용하기 위한 선형압축기를 개발하고자 하였다. 즉 선형압축기에 의해서 압축된 냉매를 사용하여 CPU를 냉각하기 위해서 본 연구를 시작하였다. 본 연구에서는 선형전동기를 공진구동형 스프링을 장착하여 50-100Hz로 공진구동하는 액추에이터를 제작하여 그 특성을 알아보았다. 먼저 제자과정과 제작후 추력과 공진구동 설계 및 공진구동시 전기적, 기계적 특성변화를 확인하였으며 피스톤과 실린더 및 흡입밸브와 배기밸브 등을 장착하여 선형압축기로서 시운전까지 수행하였다.

  • PDF

A Micro-positioning Parallel Mechanism Platform with 100-degree Tilting Capability (높은 회전성능($100^{\circ}$)을 가지는 초정밀 위치결정용 마이크로 병렬기구 플랫폼의 개발)

  • Yoon Yong-Ha;Kang Deuk-Soo;Seo Tae-Won;Kim Hong-Seok;Sung Tai-Jong;Kim Jong-Won
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.131-132
    • /
    • 2006
  • This paper presents a micro-positioning platform based on the unique parallel mechanism recently developed by the authors. The platform has a meso-scale rectangular shape whose size is $20{\times}23m$. The stroke is 5 mm for both the x- and y-axis and 100 degrees for the ${\alpha}$-axis(the rotational axis along the x-axis). The platform is actuated by the three sets of two-stage linear actuators: a linear motor for rough positioning and a piezo actuator for fine positioning. The platform is already assembled. Experimental results of the positioning measurements and control performance are presented.

  • PDF