• Title/Summary/Keyword: Linear Motion Actuator

Search Result 163, Processing Time 0.03 seconds

The Influence of elastic stiffness for a Starting State of Linear Actuator (선형액추에이터의 초기구동에 미치는 탄성계수의 영향)

  • Woo, Byung-Chul;Kang, Do-Hyun;Hong, Do-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.77-79
    • /
    • 2004
  • A typical conventional systems of a linear motion use rack and pinions or ball screws to convert rotary motions from DC servo motors. A linear motor has been used a several field for a MEMS technology and a aircraft carrier. We was studied a transient response of a linear actuator with a damping ratio, spring constant and a pressed power.

  • PDF

Transient Response of a linear actuator with a damping ratio (공진형 선형 액추에이터의 감쇄지수 변화에 따른 과도 응답특성)

  • Woo Byung Chul;Kang Do Hyun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1037-1039
    • /
    • 2004
  • A typical conventional systems of a linear motion use rack and pinions or ball screws to convert rotary motions from DC servo motors. A linear motor has been used a several field for a MEMS technology and a aircraft carrier. We was studied a transient response of a linear actuator with a damping ratio, spring constant and a pressed power.

  • PDF

Transient Response Characteristic of a Linear Actuator in a Spring Stiffness Variations (공진형 선형 액추에이터의 스프링 강성 변화에 따른 과도응답특성)

  • Kang Do-Hyun;Hong Do-Kwan;Woo Byung-Chul
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.3
    • /
    • pp.134-138
    • /
    • 2005
  • A typical conventional systems of a linear motion use rack and pinions or ball screws to convert rotary motions from DC servo motors. A linear motor has been used a several field for a MEMS technology and a aircraft carrier. We have studied a transient response of a linear actuator with a damping ratio, spring constant and a pressed power for a constant stroke control.

Linear Actuator using Tuned Modes of a Piezoelectric Plate (압전 플레이트의 모드 튜닝을 이용한 선형 엑츄에이터 설계)

  • Choi, Yo-Han;Lee, Seung-Yop;Lee, Sang-Gu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.484-487
    • /
    • 2006
  • In this paper, linear ultrasonic actuators are designed using two dimensional motions of a PMW-PT piezoelectric plate. By equalizing the natural frequencies of longitudinal and transverse vibration modes in the cantilever structure, the ultrasonic motion of the combined vibration modes are generated. We have designed two different PMN-PT actuators: one uses a tip attached on the edge of the actuator and it drives the object in the perpendicular direction of the tip. In other model, the actuator plate moves itself through stationary guides. Prototypes of the two models are manufactured and experiments results are compared to the theoretical and numerical results. The effects of structural characteristics and the friction force existing between the actuator tip and the moving object are considered. Experiments show the possibility of small size ultrasonic linear motors which can be applicable to small form factor information storage and phone camera actuators.

  • PDF

Minimization of Modeling Error of the Linear Motion System with Voice Coil Actuator

  • Hwang, Jin-Dong;Kwak, Yong-Kil;Jung, Hong-Jung;Kim, Sun-Ho;Ahn, Jung-Hwan
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.54-61
    • /
    • 2008
  • This paper presents a method for reducing modelling error in the linear motion system with voicecoil actuator (VCA). A model of linear motion system composed of a mechanism and control was prepared to verify the proposed method. In modeling of the system, the damping coefficient obtained experimentally is applied to the model in order to consider the effect of the viscous friction for the moving part in VCA. The response velocity of VCA for duty ratio of PWM signal was analyzed in the time domain. Consequently, the relation between velocity and duty ratio was obtained. The result from the experiment showed an error of 9% when compared with that of simulation. In order to reduce the modeling error, impedance variation according to input frequency was analyzed, and equivalent impedance with multi-frequency was applied to the control part. As a result, the modeling error decreased to 5%.

Contact-free Linear Actuator Using Active Magnetic Bearing (능동 자기 베어링을 이용한 비접촉식 선형 구동기)

  • 이상헌;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.91-98
    • /
    • 2003
  • In the field of precision manufacturing demanding high positioning performance, the mechanical friction in positioning device deteriorates the quality of the product and increases the cost of production for positioning devices. Therefore, we propose a contract-free linear actuator using active magnetic bearing. The structure and operating principle of the proposed system are explained, and the magnetic forces are analyzed by magnetic circuit theory to design magnetic bearings and linear actuator. With the derived equation of motion, the stability is identified. Experimental results are presented to show the feasibility.

Research for ultra precision linear motor by using piezo stack actuators (적층형 압전재료를 이용한 초정밀 선형 모터에 관한 연구)

  • 임장환;김재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.649-654
    • /
    • 2003
  • This paper is focused on the research of the ultra precision linear motor by using piezo stack actuators. The development of linear motor which can be controlled nano or micro scale is necessary for the precision manufacturing. Self-moving-cell principle is used for the design of linear motor Self-moving-cell linear motor is consisted of three cell structures, and each cell has two shells and one piezo-stack actuator. Each cell can do clamping and moving by two shell structures. The shell structure deformation by piezo stack actuator can move the linear motor by losing the clamping between the shall and guideway. This paper presents the design, manufacturing and test of the motor.

  • PDF

High-Precision Surface Servo Methodology (고정밀 서피스 서보 방법론)

  • Jung, Kwangsuk;Park, Junkyu;Shim, Kibon
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • High-precision surface actuator, in which in-plane motion is realized by not two-dimensional actuator superposing linear actuators but integrated planar actuator, has been developed to cope with the severe target performance like precise motion with large envelope. It is very difficult to accomplish the performance with the traditional actuating principle. So, various methods have been tried to break through the problem. This paper discusses some meaningful trials performed in the Nano Measurement and Precision Motion Control Lab. of Korea National University of Transportation.

  • PDF

Lumped Parameter Modeling and Analysis of Electromagnetic Linear Actuator (전자기 리니어 액츄에이터의 집중매개변수 모델링 및 해석)

  • Jang, Jae-Hwan;Cho, Seong-Jin;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.18-24
    • /
    • 2016
  • An electromagnetic linear actuator is controlled precisely and securely and is useful in devices that require linear motion. The most commonly used method in the performance verification process for an electromagnetic actuator is finite element analysis that utilizes CAE. However, finite element analysis has the disadvantage that modeling and analysis consume a lot of time. Accordingly, lumped parameter analysis can be an alternative approach to the finite element method because of its computation iteration capability with fair accuracy. In this paper, the lumped parameter model and simulation results are presented. In addition, the results of the lumped parameter analysis are compared with those obtained from finite element analysis for verification.

Dynamic Analysis and Experiments of Moving-Magnet Linear Actuator with/without Spring (스프링 유무에 따른 가동자석형 직선형 액추에이터의 동특성해석 및 실험)

  • Jang Seok-Myeong;Choi Jang-Young;You Dae-Joon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.21-26
    • /
    • 2006
  • This paper deals with the dynamic analysis and experiments of moving-magnet linear actuator with/without spring. On the basis of two dimensional (2-D) analytical solutions and experiments, control parameters such as thrust constant, back-emf constant, inductance and resistance are obtained. And then, dynamic simulation algorithm is established from the voltage and motion equation. Finally, for various values of frequency, dynamic simulation results for characteristics of current and displacement of moving-magnet linear actuator with and without spring are presented and confirmed through the experiments. In particular, This paper applies the PWM voltage waveform obtained from a DSP for bidirectional voltage drive to the actuator.