• Title/Summary/Keyword: Linear Interpolation

Search Result 599, Processing Time 0.022 seconds

Physcial and Mechanical Characteristics of Soft Clay in Nam-Ak New City (남악신도시 연약점토의 물리적 특성 및 역학적 특성 연구)

  • 김종렬;배성웅;이치열
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.271-278
    • /
    • 2002
  • Soft ground has complex features in mechanic character of ground. Some problems about the settlement and transformation occur if the ground strength is comparatively weak and the depth is large. Therefore, we should consider physical and mechanical characters for safe, economical design and management. As the result of the course, we can compare them with those of field then solve the limitations which were came from the complex character of the soft ground. I have considered the soil's physical character (specific gravity of soil particles, moisture content, grain-size analysis etc) and mechanical character (direct shear test, consolidation, triaxial shear test etc), and then make out a linear interpolation by regression using the two, those and connection of the depth

  • PDF

Demagnetization Fault Diagnosis in IPMSM Using Linear Interpolation (선형보간법을 이용한 매립형 영구자석 동기모터의 감자고장진단)

  • Jeong, Hyeyun;Moon, Seokbae;Lee, Hojin;Kim, Sang Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.568-574
    • /
    • 2017
  • This paper proposes a demagnetization fault diagnosis method for interior permanent magnet synchronous motors(IPMSMs). In particular, a demagnetization fault is one of the most frequent electrical faults in IPMSMs. This paper proposes an estimation method for permanent magnet flux. The method is based on linear interpolation. The effectiveness of the proposed method for diagnose demagnetization faults is verified through various operating conditions by finite element simulation.

Correction of Antenna Position for Projection Center Coordinates by Kinematic DGPS-Positioning (동적 DGPS 측위에 의한 투영중심좌표 결정을 위한 수신기 위치의 보간)

  • 이종출;문두열;신상철
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.2
    • /
    • pp.165-173
    • /
    • 1997
  • The combined bundle block adjustment with projection center coordinates determined by kinematic DGPS-positioning has reached a high level of accuracy. Standard deviations of the ground coordinates of $\pm{10cm}$ or even better can be reached. On this accuracy level also smaller error components are becoming more important. One major point of this is the interpolation of the projection centers as a function of time between the GPS-antenna locations. A just linear interpolation is not respecting the not linear movement of the aircraft. Based on a least squares polynomial fitting the aircraft maneuver can be estimated more accurate and blunders of the GPS-positions caused by loss of satellite and cycle slips are determinable. The interpolation with a time interval of 3sec in the study area RHEINKAMP is quite different to the interpolation with a time interval of 6-7sec in the study area MAAS. The GPS-positions of the study area are identified as blunders based on a local polynomial regression. This cannot be neglected for precise block adjustment.

  • PDF

An Efficient Image Interpolation Algorithm using Edges Extracted Edges From Binary Image (이진영상으로부터 에지 추출을 통한 효율적인 영상보간 알고리즘)

  • Lee, Sang-Hoon;Kim, Sung-Geun;Lee, Dong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.363-370
    • /
    • 2009
  • Image interpolation addresses the problem of generating a high-resolution image from its low-resolution version. Classical linear interpolation algorithms are simple and popular, but they produce interpolated image with blurred edges and annoying artifacts, Thus, many edge-based interpolation algorithms have been proposed to improve the subjective quality of the interpolated image, especially around edges on the image. In this paper, we propose a new interpolation algorithm which uses edges extracted from binary image. The proposed algorithm is applied to the image after interpolating using 6-Tap FIR filter. The values of interpolation pixels on edges extracted from binary image are modified using neighborhood pixels on the same edge. Experimental results for various images show that the proposed method provides better performance than existing methods.

DFT-Based Channel Estimation with Channel Response Mirroring for MIMO OFDM Systems (MIMO OFDM 시스템을 위한 채널 응답 미러링을 이용한 DFT기반 채널 추정 기법)

  • Lee, JongHyup;Kang, Sungjin;Noh, Wooyoung;Oh, Jimyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.655-663
    • /
    • 2021
  • In this paper, DFT-Based channel estimation with channel response mirroring is proposed and analyzed. In General, pilot symbols for channel estimation in MIMO(Multi-Input Multi-Output) OFDM(Orthogonal Frequency-Division Multiplexing) Systems have a diamond shape in the time-frequency plane. An interpolation technique to estimate the channel response of sub-carriers between reference symbols is needed. Various interpolation techniques such as linear interpolation, low-pass filtering interpolation, cubic interpolation and DFT interpolation are employed to estimate the non-pilot sub-carriers. In this paper, we investigate the conventional DFT-based channel estimation for noise reduction and channel response interpolation. The conventional method has performance degradation by distortion called "edge effect" or "border effect". In order to mitigate the distortion, we propose an improved DFT-based channel estimation with channel response mirroring. This technique can efficiently mitigate the distortion caused by the DFT of channel response discontinuity. Simulation results show that the proposed method has better performance than the conventional DFT-based channel estimation in terms of MSE.

Salt and Pepper Noise Removal using Linear Interpolation and Spatial Weight value (선형 보간법 및 공간 가중치를 이용한 Salt and Pepper 잡음 제거)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1383-1388
    • /
    • 2016
  • Although image signal processing is used in many fields, degradation takes place in the process of transmitting image data by several causes. CWMF, A-TMF, and AWMF are the typical methods to eliminate noises from image data damaged under salt and pepper noise environment. However, those filters are not effective for noise rejection under highly dense noise environment. In this respect, the present study proposed an algorithm to remove in salt and pepper noise. In case the center pixel is determined to be non-noise, it is replaced with original pixel. In case the center pixel is noise, it segments local mask into 4 directions and uses linear interpolation to estimate original pixel. And then it applies spatial weight to the estimated pixel. The proposed algorithm shows a high PSNR of 24.56[dB] for House images that had been damaged of salt and pepper noise(P = 50%), compared to the existing CWMF, A-TMF and AWMF there were improvements by 16.46[dB], 12.28[dB], and 12.32[dB], respectively.

EZXover: C program to Reduce Cross-over Errors in Marine Geophysical Survey Data (지구물리탐사자료에서 교차점오차를 보정하기위한 EZXover 프로그램 개발)

  • Kang Moo-Hee;Han Hyun-Chul;Kim Kyong-O;SunWoo Don;Kim Jin-Ho;Gong Gee-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.229-234
    • /
    • 2006
  • Cross-over errors (XOEs) may mislead scientists when interpreting marine geophysical data. Such risk can be reduced by correcting the data proportionally between two cross-over points (XOPs). C program is presented to determine XOPs using a quick rejection test and a straddle test, and to adjust XOEs using a weighted linear interpolation algorithm.

View Morphing for Generation of In-between Scenes from Un-calibrated Images (비보정 (un-calibrated) 영상으로부터 중간영상 생성을 위한 뷰 몰핑)

  • Song Jin-Young;Hwang Yong-Ho;Hong Hyun-Ki
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Image morphing to generate 2D transitions between images may be difficult even to express simple 3D transformations. In addition, previous view morphing method requires control points for postwarping, and is much affected by self- occlusion. This paper presents a new morphing algorithm that can generate automatically in-between scenes from un-calibrated images. Our algorithm rectifies input images based on the fundamental matrix, which is followed by linear interpolation with bilinear disparity map. In final, we generate in-between views by inverse mapping of homography between the rectified images. The proposed method nay be applied to photographs and drawings, because neither knowledge of 3D shape nor camera calibration, which is complex process generally, is required. The generated in-between views can be used in various application areas such as simulation system of virtual environment and image communication.

Exploiting Patterns for Handling Incomplete Coevolving EEG Time Series

  • Thi, Ngoc Anh Nguyen;Yang, Hyung-Jeong;Kim, Sun-Hee
    • International Journal of Contents
    • /
    • v.9 no.4
    • /
    • pp.1-10
    • /
    • 2013
  • The electroencephalogram (EEG) time series is a measure of electrical activity received from multiple electrodes placed on the scalp of a human brain. It provides a direct measurement for characterizing the dynamic aspects of brain activities. These EEG signals are formed from a series of spatial and temporal data with multiple dimensions. Missing data could occur due to fault electrodes. These missing data can cause distortion, repudiation, and further, reduce the effectiveness of analyzing algorithms. Current methodologies for EEG analysis require a complete set of EEG data matrix as input. Therefore, an accurate and reliable imputation approach for missing values is necessary to avoid incomplete data sets for analyses and further improve the usage of performance techniques. This research proposes a new method to automatically recover random consecutive missing data from real world EEG data based on Linear Dynamical System. The proposed method aims to capture the optimal patterns based on two main characteristics in the coevolving EEG time series: namely, (i) dynamics via discovering temporal evolving behaviors, and (ii) correlations by identifying the relationships between multiple brain signals. From these exploits, the proposed method successfully identifies a few hidden variables and discovers their dynamics to impute missing values. The proposed method offers a robust and scalable approach with linear computation time over the size of sequences. A comparative study has been performed to assess the effectiveness of the proposed method against interpolation and missing values via Singular Value Decomposition (MSVD). The experimental simulations demonstrate that the proposed method provides better reconstruction performance up to 49% and 67% improvements over MSVD and interpolation approaches, respectively.

Multi-Mode Reconstruction of Subsampled Chrominance Information using Inter-Component Correlation in YCbCr Colorspace (YCbCr 컬러공간에서 구성성분간의 상관관계를 이용한 축소된 채도 정보의 다중 모드 재구성)

  • Kim, Young-Ju
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.2
    • /
    • pp.74-82
    • /
    • 2008
  • This paper investigates chrominance reconstruction methods that reconstruct subsampled chrominance information efficiently using the correlation between luminance and chrominance components in the decompression process of compressed images, and analyzes drawbacks involved in the adaptive-weighted 2-dimensional linear interpolation among the methods, which shows higher efficiency in the view of computational complexity than other methods. To improve the drawback that the spatial frequency distribution is not considered for the decompressed image and to support the application on a low-performance system in behalf of 2-dimensional linear interpolation, this paper proposes the multi-mode reconstruction method which uses three reconstruction methods having different computational complexity from each other according to the degree of edge response of luminance component. The performance evaluation on a development platform for embedded systems showed that the proposed reconstruction method supports the similar level of image quality for decompressed images while reducing the overall computation time for chrominance reconstruction in comparison with the 2-dimensional linear interpolation.