• Title/Summary/Keyword: Linear Equations

Search Result 2,511, Processing Time 0.021 seconds

Decomposition Characteristics of Fungicides(Benomyl) using a Design of Experiment(DOE) in an E-beam Process and Acute Toxicity Assessment (전자빔 공정에서 실험계획법을 이용한 살균제 Benomyl의 제거특성 및 독성평가)

  • Yu, Seung-Ho;Cho, Il-Hyoung;Chang, Soon-Woong;Lee, Si-Jin;Chun, Suk-Young;Kim, Han-Lae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.955-960
    • /
    • 2008
  • We investigated and estimated at the characteristics of decomposition and mineralization of benomyl using a design of experiment(DOE) based on the general factorial design in an E-beam process, and also the main factors(variables) with benomyl concentration(X$_1$) and E-beam irradiation(X$_2$) which consisted of 5 levels in each factor was set up to estimate the prediction model and the optimization conditions. At frist, the benomyl in all treatment combinations except 17 and 18 trials was almost degraded and the difference in the decomposition of benomyl in the 3 blocks was not significant(p > 0.05, one-way ANOVA). However, the % of benomyl mineralization was 46%(block 1), 36.7%(block 2) and 22%(block 3) and showed the significant difference of the % that between each block(p < 0.05). The linear regression equations of benomyl mineralization in each block were also estimated as followed; block 1(Y$_1$ = 0.024X$_1$ + 34.1(R$^2$ = 0.929)), block 2(Y$_2$ = 0.026X$_2$ + 23.1(R$^2$ = 0.976)) and block 3(Y$_3$ = 0.034X$_3$ + 6.2(R$^2$ = 0.98)). The normality of benomyl mineralization obtained from Anderson-Darling test in all treatment conditions was satisfied(p > 0.05). The results of prediction model and optimization point using the canonical analysis in order to obtain the optimal operation conditions were Y = 39.96 - 9.36X$_1$ + 0.03X$_2$ - 10.67X$_1{^2}$ - 0.001X$_2{^2}$ + 0.011X$_1$X$_2$(R$^2$ = 96.3%, Adjusted R$^2$ = 94.8%) and 57.3% at 0.55 mg/L and 950 Gy, respectively. A Microtox test using V. fischeri showed that the toxicity, expressed as the inhibition(%), was reduced almost completely after an E-beam irradiation, whereas the inhibition(%) for 0.5 mg/L, 1 mg/L and 1.5 mg/L was 10.25%, 20.14% and 26.2% in the initial reactions in the absence of an E-beam illumination.