• Title/Summary/Keyword: Linear Data

Search Result 7,719, Processing Time 0.029 seconds

Efficiency of Aggregate Data in Non-linear Regression

  • Huh, Jib
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.327-336
    • /
    • 2001
  • This work concerns estimating a regression function, which is not linear, using aggregate data. In much of the empirical research, data are aggregated for various reasons before statistical analysis. In a traditional parametric approach, a linear estimation of the non-linear function with aggregate data can result in unstable estimators of the parameters. More serious consequence is the bias in the estimation of the non-linear function. The approach we employ is the kernel regression smoothing. We describe the conditions when the aggregate data can be used to estimate the regression function efficiently. Numerical examples will illustrate our findings.

  • PDF

ROBUST FUZZY LINEAR REGRESSION BASED ON M-ESTIMATORS

  • SOHN BANG-YONG
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.591-601
    • /
    • 2005
  • The results of fuzzy linear regression are very sensitive to irregular data. When this points exist in a set of data, a fuzzy linear regression model can be incorrectly interpreted. The purpose of this paper is to detect irregular data and to propose robust fuzzy linear regression based on M-estimators with triangular fuzzy regression coefficients for crisp input-output data. Numerical example shows that irregular data can be detected by using the residuals based on M-estimators, and the proposed robust fuzzy linear regression is very resistant to this points.

The extension of the largest generalized-eigenvalue based distance metric Dij1) in arbitrary feature spaces to classify composite data points

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • v.17 no.4
    • /
    • pp.39.1-39.20
    • /
    • 2019
  • Analyzing patterns in data points embedded in linear and non-linear feature spaces is considered as one of the common research problems among different research areas, for example: data mining, machine learning, pattern recognition, and multivariate analysis. In this paper, data points are heterogeneous sets of biosequences (composite data points). A composite data point is a set of ordinary data points (e.g., set of feature vectors). We theoretically extend the derivation of the largest generalized eigenvalue-based distance metric Dij1) in any linear and non-linear feature spaces. We prove that Dij1) is a metric under any linear and non-linear feature transformation function. We show the sufficiency and efficiency of using the decision rule $\bar{{\delta}}_{{\Xi}i}$(i.e., mean of Dij1)) in classification of heterogeneous sets of biosequences compared with the decision rules min𝚵iand median𝚵i. We analyze the impact of linear and non-linear transformation functions on classifying/clustering collections of heterogeneous sets of biosequences. The impact of the length of a sequence in a heterogeneous sequence-set generated by simulation on the classification and clustering results in linear and non-linear feature spaces is empirically shown in this paper. We propose a new concept: the limiting dispersion map of the existing clusters in heterogeneous sets of biosequences embedded in linear and nonlinear feature spaces, which is based on the limiting distribution of nucleotide compositions estimated from real data sets. Finally, the empirical conclusions and the scientific evidences are deduced from the experiments to support the theoretical side stated in this paper.

An Approach to Applying Multiple Linear Regression Models by Interlacing Data in Classifying Similar Software

  • Lim, Hyun-il
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.268-281
    • /
    • 2022
  • The development of information technology is bringing many changes to everyday life, and machine learning can be used as a technique to solve a wide range of real-world problems. Analysis and utilization of data are essential processes in applying machine learning to real-world problems. As a method of processing data in machine learning, we propose an approach based on applying multiple linear regression models by interlacing data to the task of classifying similar software. Linear regression is widely used in estimation problems to model the relationship between input and output data. In our approach, multiple linear regression models are generated by training on interlaced feature data. A combination of these multiple models is then used as the prediction model for classifying similar software. Experiments are performed to evaluate the proposed approach as compared to conventional linear regression, and the experimental results show that the proposed method classifies similar software more accurately than the conventional model. We anticipate the proposed approach to be applied to various kinds of classification problems to improve the accuracy of conventional linear regression.

Piecewise Continuous Linear Density Estimator

  • Jang, Dae-Heung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.959-968
    • /
    • 2005
  • The piecewise linear histogram can be used as a simple and efficient tool for the density estimator. But, this piecewise linear histogram is discontinuous function. We suppose the piecewise continuous linear histogram as a simple and efficient tool for the density estimator and the alternative of the piecewise linear histogram.

  • PDF

Implementing Linear Models in Genetic Programming to Utilize Accumulated Data in Shipbuilding (조선분야의 축적된 데이터 활용을 위한 유전적프로그래밍에서의 선형(Linear) 모델 개발)

  • Lee, Kyung-Ho;Yeun, Yun-Seog;Yang, Young-Soon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.534-541
    • /
    • 2005
  • Until now, Korean shipyards have accumulated a great amount of data. But they do not have appropriate tools to utilize the data in practical works. Engineering data contains experts' experience and know-how in its own. It is very useful to extract knowledge or information from the accumulated existing data by using data mining technique This paper treats an evolutionary computation based on genetic programming (GP), which can be one of the components to realize data mining. The paper deals with linear models of GP for the regression or approximation problem when given learning samples are not sufficient. The linear model, which is a function of unknown parameters, is built through extracting all possible base functions from the standard GP tree by utilizing the symbolic processing algorithm. In addition to a standard linear model consisting of mathematic functions, one variant form of a linear model, which can be built using low order Taylor series and can be converted into the standard form of a polynomial, is considered in this paper. The suggested model can be utilized as a designing tool to predict design parameters with small accumulated data.

A General Mixed Linear Model with Left-Censored Data

  • Ha, Il-Do
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.969-976
    • /
    • 2008
  • Mixed linear models have been widely used in various correlated data including multivariate survival data. In this paper we extend hierarchical-likelihood(h-likelihood) approach for mixed linear models with right censored data to that for left censored data. We also allow a general random-effect structure and propose the estimation procedure. The proposed method is illustrated using a numerical data set and is also compared with marginal likelihood method.

A Study on the Hierarchical Representation of Images: An Efficient Representation of Quadtrees BF Linear Quadtree (화상의 구조적 표현에 관한 연구- 4진트리의 효율적인 표현법:BF선형 4진트)

  • Kim, Min-Hwan;Han, Sang-Ho;Hwang, Hee-Yeung
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.7
    • /
    • pp.498-509
    • /
    • 1988
  • A BF(breadth-first) linear quadtree as a new data structure for image data is suggested, which enables us to compress the image data efficiently and to make operations of the compressed data easily. It is a list of path names for black nodes as the linear quadtree is. The path name for each black node of a BF linear quadtree is represented as a sequence of path codes from the root node to itself, whereas that of linear quadtree as a sequence of path codes from the root node to itself and fill characters for cut-offed path from it to any n-level node which corresponds to a pixel of an image. The BF linear quadtree provides a more efficent compression ratio than the linear quadtree does, because the former does not require redundant characters, fill characters, for the cut-offed paths. Several operations for image processing can be also implemented on this hierarchical structure efficiently, because it is composed of only the black nodes ad the linear quadtree is . In this paper, algorithms for several operations on the BF linear quadtree are defined and analyzed. Experimental results for forur image data are also given and discussed.

Imputation Method Using Local Linear Regression Based on Bidirectional k-nearest-components

  • Yonggeol, Lee
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2023
  • This paper proposes an imputation method using a bidirectional k-nearest components search based local linear regression method. The bidirectional k-nearest-components search method selects components in the dynamic range from the missing points. Unlike the existing methods, which use a fixed-size window, the proposed method can flexibly select adjacent components in an imputation problem. The weight values assigned to the components around the missing points are calculated using local linear regression. The local linear regression method is free from the rank problem in a matrix of dependent variables. In addition, it can calculate the weight values that reflect the data flow in a specific environment, such as a blackout. The original missing values were estimated from a linear combination of the components and their weights. Finally, the estimated value imputes the missing values. In the experimental results, the proposed method outperformed the existing methods when the error between the original data and imputation data was measured using MAE and RMSE.

MapReduce-based Localized Linear Regression for Electricity Price Forecasting (전기 가격 예측을 위한 맵리듀스 기반의 로컬 단위 선형회귀 모델)

  • Han, Jinju;Lee, Ingyu;On, Byung-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.183-190
    • /
    • 2018
  • Predicting accurate electricity prices is an important task in the electricity trading market. To address the electricity price forecasting problem, various approaches have been proposed so far and it is known that linear regression-based approaches are the best. However, the use of such linear regression-based methods is limited due to low accuracy and performance. In traditional linear regression methods, it is not practical to find a nonlinear regression model that explains the training data well. If the training data is complex (i.e., small-sized individual data and large-sized features), it is difficult to find the polynomial function with n terms as the model that fits to the training data. On the other hand, as a linear regression model approximating a nonlinear regression model is used, the accuracy of the model drops considerably because it does not accurately reflect the characteristics of the training data. To cope with this problem, we propose a new electricity price forecasting method that divides the entire dataset to multiple split datasets and find the best linear regression models, each of which is the optimal model in each dataset. Meanwhile, to improve the performance of the proposed method, we modify the proposed localized linear regression method in the map and reduce way that is a framework for parallel processing data stored in a Hadoop distributed file system. Our experimental results show that the proposed model outperforms the existing linear regression model. Specifically, the accuracy of the proposed method is improved by 45% and the performance is faster 5 times than the existing linear regression-based model.