• Title/Summary/Keyword: Linear DC Motor

Search Result 157, Processing Time 0.052 seconds

A Study on the Design of a Digital Controller for DC Servo Motor (서보 모터의 디지털 제어기 설계에 관한 연구)

  • Lee, Doo-Bok;Hong, Eon-Sik;Choe, Hong-Kyu;Chae, Dong-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.4
    • /
    • pp.25-35
    • /
    • 1987
  • This paper deals with the design of the digital controller for DC servo motor, and it is implemented for the cartesian coordinate 4 axes manipulator. A design method of the controller is adopted an algorithm using the digital position locked loop(DPLL) method and the linear PID control for the smooth motion. To simplify the hardware configuration of control system, 8279 keyboard/display controller, Z-80 CTC counter and 8255 PPI are used. Therefore the design method to control each motor as real-time is presented. To show effectiveness of the design, the PWM circuit and frequency/voltage converter are applied for the velocity control of robot system. When the proposed controller is applied to the 4-axes manipulator, it reveals that the error probabilities of X, Y and Z axis as 0.033%, 0.023% and 0.028% respectively.

  • PDF

A friction compensation scheme based on the on-line estimation with a reduced model (축소 모델을 이용한 마찰력의 마찰력의 온라인 추정 및 보상기법)

  • Choi, Jae-Il;Yang, Sang-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.174-180
    • /
    • 1996
  • The friction is one of the nonlinearities to be considered in the precise position control of a system which has electromechanical components. The friction has complicated nonlinear characteristics and depends on the velocity, the position and the time. The conventional fixed friction compensator and the controller based on linear control theory may cause the steady state position error or oscillation. The plant to be controlled in this study is a positioning system with a linear brushless DC motor(LBLDCM). The system behaves like a 4th-order model including the compliance and the friction. In this study, the plant model is simplified to a 2nd-order model to reduce the computation in on- line estimation. Also, to reduce the computation time, only the friction is estimated on-line while the mass and the viscous damping coefficient are fixed to the values obtained from off-line estimation. The validity of the proposed scheme is illustrated with the computer simulation and the experiment where the friction is compensated by using the estimation.

  • PDF

Optimal Design of Brushless DC Motor for servo drive (서보용 BLDC전동기의 최적설계에 관한 연구)

  • Kim, Jung-Chul;Park, Yong-Il;Cho, Yun-Hyun;Im, Tae-Bin;Seung, Ha-Kyoung
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.179-182
    • /
    • 1998
  • This paper is proposed a selection method of the major design dimension which constrain the maximum acceleration capability and minimum power loss of surface-mounted brushless do motor with NdFeB permanent magnet for servo drives. Expressions are derived from the air-gap flux density and the linear current density around the stator periphery and design dimensions. The linear current density is limited by the need to avoid demagnetization. In this paper, We compute the optimum design dimensions of 2KW BLDC motor with maximum acceleration capability and minimum power loss by using genetic algorithm.

  • PDF

The optimum geometric design of stators for brush less DC linear motors (브러시없는 직류 선형 모터의 고정자 형상 최적 설계)

  • 최문석;김용일;이상락
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1173-1176
    • /
    • 1995
  • We design and analyze two type stators for brushless DC linear motors by the experiment and the computational analysis. For a U-shape stator, the maximum manetic flux density by the finite element method(FEM) is large than that by the experiment by 1.0~2.2%. The result by the FEM is so accurate that it can be applied to the geometric design for the optimization. To increase the maximum magnetic flux density, we suggest an improved stator and analyze it by the 3-D and 2-D models. The maximum magnetic flux density of the improved stator is large than that of the U-Shape stator by 2.7%. Considering the size of the improved stator and maximum magnetic flux density, we determine that the optimized thickness is 5mm for a given specification.

  • PDF

Controller Design of a DC-DC Converter using an Optimal Control Theory (최적제어이론을 이용한 DC-DC 컨버터의 제어기 설계)

  • Lee, S.H.;Bae, E.K.;Sin, C.J.;Jeon, K.Y.;Jeon, J.Y.;Oh, B.H.;Lee, H.G.;Han, K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.421-423
    • /
    • 2007
  • In this paper, The authors apply a state feedback control using an optimal control theory to improve the stability of the control and the dynamic response of the DC-DC converter system with a number of different loads. To execute a this state feedback control, The authors present the pole placement technique using Linear Quadratic Regulator(LQR) to optimally control the system. An integrator can also be included in the open-loop path in order to minimize the steady-state error of the output voltage. To confirm the superiority of the controller, The simulation results are presented.

  • PDF

High Speed Position Control Method of a Linear DC Motor (리니어 직류 모터의 고속 위치 제어방식)

  • 엄기환;선동설;김주홍
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.7 no.4
    • /
    • pp.51-58
    • /
    • 1993
  • This paper proposed a minmum time control method by a parabolic switching function to high speed position control, with high accuracy, of a Linear OC Motor A proposed method is organized simply and a bang-bang control's signal switched on a parabola type switching function in the phase for a minimum time control realization. However, a sliding mode occurs owing to system's modelling errors, so the minimum time control is realized a once switching bang-bang control by repeating trial experiments. Next time, in a neighborhood of the origin in the phase plane, a Linear OC Motor is stopped at the origin by the linear feedback control.

  • PDF

BLDC Motor Model with Non-Linear Back-EMF Wave (비선형 역기전력 파형을 고려한 BLDC 모터 모델)

  • 이상용;강병희;채영민;목형수;최규하;김덕근;류재성
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.22-25
    • /
    • 1999
  • A brushless DC motor has the high quality of torque output and silence, has been more widely used in industrial area. As the driver and controller of BLDC motor have been more complicated and precise, simulation method has been much used in motor design. And the output characteristics of BLDC motor is determined by the waveform of BACK-KMF in instinct. But because the conventional model of BLDC motor is obtained by approximation of real nonlinear waveform to ideal trapezoidal waveform, the error is occurred in simulation result. Thus in this paper, for the correction of this error in simulation, the model of real nonlinear waveform considered is proposed, and the simulation result is obtained in case of three-phase, four-poles Y-connected, surface mounted permanent magnet BLDC motor.

  • PDF

A New Negative Impedance Stabilizing Control Technique for Switching Power Supplies with Constant Power Loads

  • Emadi A.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.276-280
    • /
    • 2001
  • In this paper, an approach to the design of negative impedance stabilizing controllers for PWM DC/DC converters that are used in DC switching. power supplies with constant power loads is presented. The control approach is based on the feedback linearization technique. Because of the negative impedance destabilizing characteristics of constant power loads, classical linear control methods have stability limitations around the operating points. However, the proposed stabilizing technique improves large-signal stability and dynamic responses. The proposed controllers are simulated and their responses under different operations are studied. Stability of the control technique is also verified using the second theorem of Lyapunov.

  • PDF

Investigation of Low-Frequency Characteristics of Four-Switch Three-Phase Inverter

  • Yuan, Qingwei;Cheng, Chong;Zhao, Rongxiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1471-1483
    • /
    • 2017
  • The low-frequency characteristics of four-switch three-phase (FSTP) inverter are investigated in this paper. Firstly, a general space vector pulse width modulation (SVPWM) directly involved the neutral point voltage of DC-link is proposed, where no sector identifications and trigonometric function calculations are needed. Subsequently, to suppress the DC offset in the neutral point voltage, the relationship between the neutral point voltage and the ${\beta}-axis$ component of the load current is derived, and then a new neutral point voltage control scheme is proposed where no low pass filter is adopted. Finally, the relationship between the load power factor and the maximum linear modulation index of the FSTP inverter is revealed. Since the operational region for the FSTP inverter in low frequency is reduced by the enlarged amplitude of the neutral point voltage, a linear modulation range enlargement scheme is proposed. A permanent magnet synchronous motor with preset rotary speed serves as the low-frequency load of the FSTP inverter. Experimental results verify that the new neutral point voltage control scheme is effective in the deviation suppression of the neutral point voltage, and the proposed scheme is able to provide a larger linear operational region in low frequency.