• Title/Summary/Keyword: Linear Circuit Analysis

Search Result 278, Processing Time 0.028 seconds

Design and Analysis of Moving Magnet Type LDM (MOVING MAGNET형 LDM의 설계해석)

  • Baek, S.H.;Park, Y.H.;Lee, J.C.;Ham, J.G.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.951-953
    • /
    • 1993
  • This study presents a design methods for linear DC motor and the designed motor is analyzed. To design the linear DC motor, magnetic circuit design is introduced and characteristics of LDM is analyzed by using the voltage equation aid dynamic equation. And the thrust characteristics are investigated using MEXWELL 2D.

  • PDF

Analysis of Principle and Performance of a New 4DOF Hybrid Magnetic Bearing

  • Bai, Guochang;Sun, Jinji;Han, Weitao;Ren, Hongliang
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.379-386
    • /
    • 2016
  • To satisfy the requirement of magnetically suspended control moment gyroscope (MSCMG) that magnetic bearing can provide torque, a novel 4DOF hybrid magnetic bearing (HMB) with integrated structure was designed. Mathematical models of forces and torques are established by using equivalent magnetic circuit method. The current stiffness, displacement stiffness, tilting current stiffness and angular stiffness of the 4DOF hybrid magnetic bearing are derived by the mathematical models. Equivalent magnetic circuit method and finite element method (FEM) simulation results indicate that the force has a good linear relationship with both displacement and current, and the torque has a good linear relationship with angular displacement and current. The novel 4DOF HMB is capable of achieving control in both two radial translational degrees of freedom (DOF) and also two radial rotational DOFs. The 4DOF HMB is well adapted to MSCMG system, exhibiting advantages in the controllable DOF, light weight and easy to control.

Design and Dynamic Analysis of LDM by using FE Analysis (부하를 고려한 LDM의 동특성 해석에 관한 연구)

  • Kang, Gyu-Hong;Yeom, Sang-Bu;Hong, Jung-Pyo;Kim, Gyu-Tak;Jung, Joong-Gi;Ha, Kyeun-Su
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.164-166
    • /
    • 1999
  • In this study, dynamic analysis of Linear DC motor has been performed. Dynamic characteristic is carried out from coupling the electrical circuit equation and mechanical kinetic equation. Trust constant and circuit parameters are obtained by FE analysis and static characteristic experiment. From the previous results, dynamic analysis is performed and the appropriateness of analysed result is verified by comparing with experimental result.

  • PDF

Direct Thrust Control of Permanent Magnet Type Linear Synchronous Motor by using Digital Signal Processor (DSP를 이용한 영구 자석형 선형 동기전동기의 직접 추력 제어)

  • U, Gyeong-Il;Kim, Deok-Jin;Gwon, Byeong-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.8
    • /
    • pp.514-521
    • /
    • 2000
  • This paper presents a direct thrust control scheme for permanent magnet linear synchronous motor(PMLSM) by using digital signal processor(DSP). And a simulation method for the direct thrust control of a permanent magnet linear synchronous motor using the equivalent circuit is presented. The detent force that was obtained by cubic spline method is considered in the simulation. Thrust correction coefficient is utilized to estimate actual thrust on the direct thrust control, which considers the longitudinal end effect due to the finite core length of the permanent magnet linear synchronous motor. The motor self inductance, the initial flux linkage by the permanent magnet is calculated in advance by the finite element analysis, and then the direct control simulation is carried out. As the results, thrust, current and speed are shwon.

  • PDF

Study on Structural and Electromagnetic Nonlinearities for Improving Dynamic Characteristics of Pickup Actuator (Pickup Actuator의 구동특성 향상을 위한 구조, 자기 비선형성에 대한 고찰)

  • Lee, Jong-Jin;Kim, Jae-Eun;Hong, Sam-Nyol;Ko, Eui-Seok;Min, Byung-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.709-711
    • /
    • 2006
  • According as optical storage becomes high-density, numerical aperture increases. Therefore, the shift characteristic of moving parts in an actuator for optical pickup becomes a critical design factor because of decrease in the tilt margin. The tilt angle is maximized when the position of moving parts is in a diagonal direction within a moving range. This is determined by design of structure and magnetic circuit of an actuator. Previous analysis method only predicts linear characteristics of moving parts. However, the result of shift characteristics of the moving parts considering structural and magnetic circuit's nonlinearity following the every position simultaneously shows us more realistic result. Therefore, we present analysis method considering nonlinearity of moving parts' position through FEM package using coupled-field analysis. Then, we will suggest hereafter a design guide by comparing the above results with experimental ones.

  • PDF

A Development of Educational Procedure for Design and Analysis with a Linear Force Motor (Linear Force Motor를 이용한 설계와 해석 교육매체 개발)

  • Park, Chang Soon
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.4 no.1
    • /
    • pp.57-64
    • /
    • 2012
  • For design of a electrical Machine it is used conventional design methode to determine size with considering of magnetical circuit and windings. After this process, Flux density and Torque are calculated with FEM program. But most electrical machines are complicated in their configuration, therefore it is not easy to understand the design process and analyzing methode. We need to develop a educational material. In this paper using Linear force motor, which is relatively not complicated in their configuration and easy to understand the relationship between electro magnetics and force, will be explained the design process and calculating process with Finite element methode. And with FEM program will be calculated and illustrated flux density in each part and Force of the Linear force motor easy to understand.

  • PDF

Permanent Magnet Biased Linear Magnetic Bearing for High-Precision Maglev Stage (초정밀 자기부상 스테이지의 위치제어를 위한 영구자석형 선형 자기베어링의 개발)

  • Lee, Sang-Ho;Chang, Jee-Uk;Kim, Oui-Serg;Han, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.164-169
    • /
    • 2001
  • The active magnetic bearing has many advantages - an active positioning, no contact and lubrication free motion - and is widely used in high precision motion stages. But, the conventional magnetic bearings composed of electromagnets only are power consuming due to their bias current and have the excessive heat generation, which can make the repeatability of the positioning system worse. To overcome this drawback, we developed a novel permanent magnet (PM) biased linear magnetic bearing for a high precision magnetically levitated stage. The permanent magnets provide a bias flux and generate a bias force, and the electromagnet increases or reduces a flux of the permanent magnets and gives a levitation force. This paper presents a theoretical magnetic circuit analysis, FEM analysis and experimental data from the 1-DOF tests, and compares the theoretical power consumption of the electromagnetic bearings and the PM biased linear magnetic bearings. The PM biased linear magnetic bearing presented in this paper gives better load capacity but lower power consumption than a conventional electromagnetic bearing and will be adopted in our 6-DOF high precision linear positioning maglev stage.

  • PDF

Study on the Air Bearings with Actively Controllable Magnetic Preloads for an Ultra-precision Linear Stage (초정밀 직선 이송계용 능동 자기예압 공기베어링에 관한 연구)

  • Ro, Seung-Kook;Kim, Soo-Hyun;Kwak, Yoon-Keun;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.134-142
    • /
    • 2008
  • In this paper, we propose a precise linear motion stage supported by magnetically preloaded air bearings. The eight aerostatic bearings with rectangular carbon porous pads were located only one side of vertical direction under the platen where four bearings are in both sides of horizontal direction as wrap-around-design, and this gives simpler configuration than which constrained by air bearings for all direction. Each of the magnetic actuators has a permanent magnet generating static magnetic flux far required preload and a coil to perturb the magnetic farce resulting adjustment of air- bearing clearance. The characteristics of porous aerostatic bearing are analyzed by numerical analysis, and analytic magnetic circuit model is driven for magnetic actuator to calculate preload and variation of force due to current. A 1-axis linear stage motorized with a coreless linear motor and a linear encoder was designed and built to verify this design concept. The load capacity, stiffness and preload force were examined and compared with analysis. With the active magnetic preloading actuators controlled with DSP board and PWM power amplifiers, the active on-line adjusting tests about the vertical, pitching and rolling motion were performed. It was shown that motion control far three DOF motions were linear and independent after calibration of the control gains.

Transverse Flux Linear Machine with High Thrust for Direct Drive Applications

  • Chang, Jung-Hwan;Kim, Ji-Won;Kang, Do-Hyun;Bang, Deok-Je
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.64-69
    • /
    • 2010
  • This paper describes the development of a novel transverse flux linear motor (TFLM) excited by permanent magnets (PMs). It combines the advantage of two different TFLMs and produces high thrust with reduced normal force. The magnetic field is analyzed by combining the three-dimensional (3D) equivalent magnetic circuit network (EMCN) method with 2D finite element analysis. The experimental findings of the prototype motors are in good agreements with the analysis results, and demonstrate the potential of the proposed motor as a direct drive requiring relatively long displacement of a mover.

The Analysis Methods for the Design of Magnetic Circuits in Linear Pulse Motors (LPM의 자기회로 설계를 위한 해석 방법)

  • Lee, Eun-Woong;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.32-36
    • /
    • 1990
  • LPM is a characterized motor to reciprocate linear motion for the office automation(OA), the factory automation(FA) and the field of information instruments because it can generate direct drive without any mechanical converter. For the design and analysis of permanent magnet type linear, pulse motor, it is therefore necessary to investigate the characteristics of magnetic flux distribution, static and dynamic thrust force, normal force, etc, by analyzing its magnetic circuit. This paper describes various useful methods for improving the characteristics of LPM. And these method is adopted on the PM and flat type, double side 2-phase 8-pole LPM.

  • PDF