• Title/Summary/Keyword: Line-scan Camera

Search Result 109, Processing Time 0.029 seconds

Development of improved image processing algorithms for an automated inspection system using line scan cameras (Line scan camera를 이용한 검사 시스템에서의 새로운 영상 처리 알고리즘)

  • Jang, Dong-Sik;Lee, Man-Hee;Bou, Chang-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.406-414
    • /
    • 1997
  • A real-time inspection system is developed using line scan cameras. Several improved algorithms are proposed for real-time detection of defects in this automated inspection system. The major improved algorithms include the preprocessing, the threshold decision, and the clustering algorithms. The preprocessing algorithms are for exact binarization and the threshold decision algorithm is for fast detection of defects in 1-D binary images. The clustering algorithm is also developed for fast classifying of the defects. The system is applied to PCBs(Printed Circuit Boards) inspection. The typical defects in PCBs are pits, dent, wrinkle, scratch, and black spots. The results show that most defects are detected and classified successfully.

  • PDF

Automated scrap-sorting research using a line-scan camera system (라인스캔 카메라 시스템을 이용(利用)한 스크랩 자동선별(自動選別) 연구(硏究))

  • Kim, Chan-Wook;Kim, Hang-Goo
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.43-49
    • /
    • 2008
  • In this study, a scrap sorting system using a color recognition method has been developed to automatically sort out specified materials from a mixture, and its application as been examined in the separation of Cu and other non-ferrous metal parts from a mixture of iron scraps. The system is composed of three parts; measuring, conveying and ejecting parts. The color of scrap surface is recognized by the measuring part consisting of a line-scan camera, light sources and a frame grabber. The recognition is program-controlled by a image processing algorithms, and thus only the scrap part of designated color is separated by the use of air nozzles. In addition, the light system is designed to meet a high speed of sorting process with a frequency-variable inverter and the air nozzled ejectors are to be operated by an I/O interface communication with a hardware controller. In the functional tests of the system, its efficiency in the recognition of Cu scraps from its mixture with Fe ones reaches to more than 90%, and that in the separation more than 80% at a conveying speed of 25 m/min. Therefore, it is expected that the system can be commercialized in the industry of shredder makers if a high efficiency ejecting system is realized.

Implementation of Optical-based Measuring Instrument for Overhead Contact Wire in Railway (전기철도 전차선로의 광학기반 형상 검측 하드웨어 구현)

  • Park, Young;Cho, Yong-Hyeon;Park, Hyun-June;Kwon, Sam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.518-518
    • /
    • 2008
  • We propose an optical-based measuring instrument of catenary system in electric railway. This system was made to utilize line scan camera as inspecting system to measure the stagger and height of overhead contact wire in railway and composed with optical type source and FPGA-based image acquisition system with PCI slot. Vision acquisition software has been used for the application to programming interface for image acquisition, display, and storage with a frequency of sampling. The proposed optical-based measuring instrument to measure the contact wire geometry shows promising on-field applications for online condition motoring. Also, this system can be applied to measure the hight and stagger or other geometry of different type of overhead catenary system.

  • PDF

Surface Inspection Algorighm using Oriented Bounding Box (회전 윤곽 상자를 이용한 표면 검사 알고리즘)

  • Hwang, Myun Joong;Chung, Seong Youb
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.1
    • /
    • pp.23-26
    • /
    • 2016
  • DC motor shafts have several defects such as double cut, deep scratch on surface, and defects in diameter and length. The deep scratches are due to collision among the other shafts. So the scratches are long and thin but their orientations are random. If the smallest enclosing box, i.e. oriented bounding box for a detective point group is found, then the size of the corresponding defect can be modeled as its diagonal length. This paper proposes an suface inspection algorithm for the DC motor shaft using the oriented bounding box. To evaluate the proposed algorithm, a test bed is made with a line scan CCD camera (4096 pixels/line) and two rollers mechanism to rotate the shaft. The experimental result on a pre-processed image with contrast streching algorithm, shows that the proposed algorithm sucessfully finds 150 surface defects and its computation time (0.291 msec) is enough fast for the requirement (4 seconds).

A Study on the Visualization of Suzi Mora Defect of FPD Color Filter (FPD용 컬러 필터의 수지 얼룩 결함 형상화에 관한 연구)

  • Kwon, Oh-Min;Lee, Jung-Seob;Park, Duck-Chun;Joo, Hyo-Nam;Kim, Joon-Seek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.761-771
    • /
    • 2009
  • Detecting defects on FPD (Flat Panel Display) color filter before the full panel is made is important to reduce the manufacturing cost. Among many types of defects, the low contrast blemish such as Suzi Mura is difficult to detect using standard CCD cameras. Even skilled inspectors in the inspection line can hardly identify such defects using bare eyes. To overcome this difficulty, point spectrometer has been used to analyze the spectrum to differentiate such defects from normal color filters. However, scanning ever increasing-size color filters by a point spectrometer takes too long time to be used in real production line. We propose a system using a spectral camera which can be viewed as a line scan camera composed of an array of point spectrometers. Three types of lighting system that exhibit different illumination spectrums are devised together with a calibration method of the proposed spectral camera system. To visualize the defect areas, various processing algorithms to identify and to enhance the small differences in spectrum between defective and normal areas are developed. Experiments shows 85% successful visualization. of real samples using the proposed system.

Development of Green-Sheet Measurement Algorithm by Image Processing Technique (영상처리기법을 이용한 그린시트 측정알고리즘 개발)

  • Pyo, C.R.;Yang, S.M.;Kang, S.H.;Yoon, S.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.51-54
    • /
    • 2007
  • The purpose of this paper is the development of measurement algorithm for green-sheet based on the digital image processing technique. The Low Temperature Cofired Ceramic (LTCC) technology can be defined as a way to produce multilayer circuits with the help of single tapes, which are used to apply conductive, dielectric and / or resistive pastes on. These single green-sheets have to be laminated together and fired in one step all. Main functionality of the green-sheet film measurement algorithm is to measure the position and size of the punching hole in each single layer. The line scan camera coupled with motorized X-Y stage is used for developing the algorithm. In order to measure the entire film area using several scanning steps, the overlapping method is used. In the process of development of the algorithm based on the image processing and analysis, strong background technology and know-how have been accumulated.

  • PDF