• Title/Summary/Keyword: Line load

Search Result 1,858, Processing Time 0.028 seconds

A Novel Line Stability Index for Voltage Stability Analysis and Contingency Ranking in Power System Using Fuzzy Based Load Flow

  • Kanimozhi, R.;Selvi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.694-703
    • /
    • 2013
  • In electric power system, the line stability indices adopted in most of the instances laid stress on variation of reactive power than real power variation of the transmission line. In this paper, a proposal is made with the formulation of a New Voltage Stability Index (NVSI) which originates from the equation of a two bus network, neglecting the resistance of transmission line, resulting in appreciable variations in both real and reactive loading. The efficacy of the index and fuzzy based load flow are validated with IEEE 30 bus and Tamil Nadu Electricity Board (TNEB) 69 bus system, a practical system in India. The results could prove that the identification of weak bus and critical line in both systems is effectively done. The weak area of the practical system and the contingency ranking with overloading either line or generator outages are found by conducting contingency analysis using NVSI.

Contigency Ranking Technique Using Line Capacity Calculation Method (선로용량 산정법을 이용한 상정사고 선택)

  • Park, Kyu-Hong;Jung, Jai-Kil;Hyun, Seung-Bum;Lee, In-Yong;Jung, In-Hak
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.285-288
    • /
    • 2000
  • This paper presents a technique for contingency ranting using line capacity calculation method and outage distribution factors(LODF) which are established by generation shift distribution factors from DC load flow solutions. By using the LODF, the line flow can be calculated a ccording to the modification of base load flow if the contingency occur. To obtain contingency ranting, maximum power tansferred to the load is obtained when load impedance $Z_r$ equal to line impedance $Z_s$. ( $Z_r$/ $Z_s$=1) The proposed algorithm has been validated in tests on a 6-bus test system.

  • PDF

Contigency Ranking Technique Using New Line Capacity (새로운 선로용량을 고려한 전력계통의 상정사고 선택)

  • Park, Kyu-Hong;Cho, Yang-Haeng
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.95-98
    • /
    • 2000
  • This paper presents a technique for contingency ranking using line capacity calculation method and outage distribution factors (LODF) which are established by generation shift distribution factors from DC load flow solutions. By using the LODF, the line flow can be calculated a ccording to the modification of base load flow if the contingency occur. To obtain contingency ranking, maximum power tansferred to the load is obtained when load impedance $Z_r$ equal to line impedance $Z_s$. The proposed algorithm has been validated in tests on a 6-bus test system.

  • PDF

Thermal buckling load optimization of laminated plates with different intermediate line supports

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.207-223
    • /
    • 2012
  • This paper deals with critical thermal buckling load optimization of symmetrically laminated four layered angle-ply plates with one or two different intermediate line supports. The design objective is the maximization of the critical thermal buckling load and a design variable is the fibre orientation in the layers. The first order shear deformation theory and nine-node isoparametric finite element model are used for the finite element solution of the laminates. The modified feasible direction (MFD) method is used for the optimization routine. For this purpose, a program based on FORTRAN is used. Finally, the numerical analysis is carried out to investigate the effects of location of the internal line supports, plate aspect ratios and boundary conditions on the optimal designs and the results are compared.

Neutral Line Current Analysis in Three-phase Nonlinear Load Condition (3상 비선형 부하시 중성선 전류 해석)

  • Min, W.K.;Kim, N.O.;Kim, B.C.;Chun, H.S.;Shin, S.D.;Kim, H.G.;Min, J.K.;Choi, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2008.11b
    • /
    • pp.109-109
    • /
    • 2008
  • Neutral line current is analyzed by the neutral line CF in nonlinear load balanced and unbalanced conditions. The worst nonlinear load condition is nonlinear balanced load condition. and It is below CFNL=1.194 that a neutral line current could not excess the rated value.

  • PDF

The Study on Arc Suppression of Line-to-Line Electrodes in Air and Removal of the Metaloxide (선대 선 전극방식의 대기압 아크억제 대책 및 Metaloxide 제거에 관한 연구)

  • 정종한;김문환
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.264-267
    • /
    • 2004
  • Recently the pulsed power systems have been widely used in many fields such as E/P(Electrostatic Precipitator), DeNOx/DeSOx power systems, ozone generators and power sources of the laser beam. In this paper, we studied various electrical characteristics for arc suppression of line-to-line electrodes in air and removal of the metaloxide using our pulsed power system. To obtain high efficiency of the pulsed power system, we repeatedly experimented and tested their characteristics. by adjusting electrode length of the load. As a result, when the value of the electrode length and pulse repetition rate were changed at the load, the value of the arc voltage changed at the electrode load. In conclusion, we controlled arc voltage of the load by ,changing electrode length and pulse repetition rate. Also. we stydied removal area of the metaloxide using area discharge according to pulse repetition rate.

Wind Load Mitigation for Transmission Tower using Viscoelastic Damper (점탄성감쇠기를 이용한 송전철탑 풍하중의 저감)

  • Min, Kyung-Won;Park, Ji-Hun;Moon, Byoung-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.955-958
    • /
    • 2005
  • In this study, the wind load characteristics for a transmission tower is investigated considering the effect of the transmission lines through stochastic analysis. The assemblage of the transmission line and insulator are modeled as a double pendulum system connected to the SDOF model of the tower It is observed that the background component of the overturing moment induced by the wind response of the transmission line has considerable portion in the total overturning moment. Based on this result, a rotational viscoelastic damper (VED) is proposed for the mitigation of the transmission line reactions, which act as wind load transferred to the tower. To verify the effectiveness of the proposed strategy, time history analysis is conducted for different wind velocities and VED damping constants. From the analysis, the proposed VED is proved to be effective for mitigation of the background component rather than the resonance component of the transmission line reaction.

  • PDF

The Development of Distribution Planning System and Distribution Line Planning System (배전계획 시스템(DISPLAN) 및 배전계통 운영계획 시스템(DLPLAN)의 개발)

  • Chae Woo Kyu;Park Chang Ho;Jeong Jong Man;Jeong Young Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.73-75
    • /
    • 2004
  • This paper presents the ability and the application of software packages for distribution planning which are DISPLAN(Distribution Planning System) and DLPLAN(Distribution Line Planning System) developed in KEPCO. After calculating size and position of maximum load by administration section for distribution, it forecasts the demand of distribution load considering growth location, increment, new load plan, etc of load by annual. Also it calculates distribution loss, voltage drop using modeled distribution line by you, and support for establishment and enlargement plan of substation and distribution line, decision of most optimal path. And it presents the abstract of used algorithm to develop this system.

  • PDF

A Study on the Heuristic Algorithm Development for Load Balance Ratio Increase of Workers in Warehouse (물류창고 불출자 로드밸런스율 증대 휴리스틱 알고리즘 개발)

  • Quan, Yu;Jang, Jung-Hwan;Jang, Jing-Lun;Jho, Yong-chul;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.1
    • /
    • pp.203-210
    • /
    • 2017
  • Companies are pursuing the management of small quantity batch production or JIT(Just-in-time) system for improving the delivery response and LOB(Line Balancing) in order to satisfy consumers' increasing demands in the current global economic recession. And in order to improve the growth of production for reducing manufacturing cost, improvements of the Load Balancing have become an important reformation factor. Thus this paper is aimed at warehouse which procures materials on the assembly line in procurement logistics of automotive logistics and proceed with research on heuristic algorithm development which can increase the Load Balancing of workers. As a result of this study, when applied the primary target value, it was verified that the whole workers decreased from 28 to 24. Furthermore, when specified the secondary target value and applied algorithm once more, it was verified that the Load Balance Ratio was improved from 44.96% to 91.7%.

A Study on the Current & Load Unbalance Factor in using Linear & Nonlinear Load (선형 및 비선형 부하 사용시 전류 및 부하불평형률에 대한 연구)

  • Kim, Jong-Gyeum;Kim, Ji-Myeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1291-1296
    • /
    • 2017
  • Single-phase and three-phase load can be used together in 3-phase 4-wire system. Single-phase and three-phase loads can be classified as linear loads without harmonics and nonlinear with harmonics. Single-phase linear loads are linear loads such as lamps and heat, and single-phase nonlinear loads are power converters such as rectifiers. It is recommended that the distribution of loads in the 3-phase, 4-wire distribution lines be evenly distributed within a certain range. However, harmonic currents generated in a nonlinear load flow on the neutral line and affect the phase current magnitude. The difference in the magnitude of the individual phase current due to the influence of the harmonic current present in the neutral line can produce a difference in current and load unbalance. In this study, current unbalance ratio and load unbalance ratio which can occur when a combination of linear and nonlinear loads are applied to 3-phase 4-wire distribution line are calculated.