• 제목/요약/키워드: Line flow fan

검색결과 49건 처리시간 0.027초

덕트 내 원심식 축류팬의 성능변화에 관한 연구 (The Study on Performance of an Axial Fan with Centrifugal type Blades in Duct flow)

  • 한재오;이수영;유승훈;이재권
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.213-216
    • /
    • 2006
  • This paper was a study about noise reduction through flow stabilization in duct using experimental method and numerical analysis at the same time. To determine the fan's type three kinds of fans(axial fan, centrifugal fan, and axial fan with centrifugal type blades) was examined to investigate the suitability for in-line duct. As a result, under the equal number of rotation 2000 RPM, performance of an axial fan with centrifugal type blades was the most superior by 55dBA at 4.3CMM among other fans. After this, analyzed the results of the numerical analysis to find out the optimum design of pitch angle such as $0^{\circ}$, $10^{\circ}$, $15^{\circ}$ and $20^{\circ}$. The intensity of turbulence was low when pitch angle was $15^{\circ}$ and air volume became peak by 5.08 CMM. It was observed that axis component of velocity increased gradually when pitch angle increased from $0^{\circ}$ to $20^{\circ}$, and embodied noise reduction and improvement of air flow rate through flow stabilization.

  • PDF

형상 최적화를 통한 축류송풍기의 설계 (Design of An Axial Flow Fan with Shape Optimization)

  • 서성진;최승만;김광용
    • 대한기계학회논문집B
    • /
    • 제30권7호
    • /
    • pp.603-611
    • /
    • 2006
  • This paper presents the response surface optimization method using three-dimensional Wavier-Stokes analysis to optimize the blade shape of an axial flow fan. Reynolds-averaged Wavier-Stokes equations with $k-{\epsilon}$ turbulence model are discretized with finite volume approximations using the unstructured grid. Regression analysis is used for generating response surface, and it is validated by ANOVA and t-statistics. Four geometric variables, i.e., sweep and lean angles at mean and tip respectively were employed to improve the efficiency. The computational results are compared with experimental data and the comparisons show generally good agreements. As a main result of the optimization, the total efficiency was successfully improved. Also, detailed effects of sweep and lean on the axial flow fan are discussed.

덕트의 유로 최적화를 통한 소음저감 연구 (Study on Noise Reduction by Optimizations of In-line Duct Flow)

  • 한재오;이수영;모진용;이재권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.803-808
    • /
    • 2006
  • This paper was a study about noise reduction through flow stabilization in duel using experimental method and numerical analysis at the same time. To determine the fan's type three kinds of fans(axial fan, centrifugal fan, and axial fan with centrifugal type) was examined to investigate the suitability for duct. As a result, under the equal number of rotation 2000 RPM, performance of an axial fan with centrifugal type was the most superior by 55dBA at 4.3CMM among other fans. After this, analyzed the results of the numerical analysis to find out the optimum design of pitch angle such as $0^{\circ},\;10^{\circ},\;15^{\circ}\;and\;20^{\circ}$. The intensity of turbulence was low when pitch angle was $15^{\circ}$ and air volume became peak by 5.08 CMM. It was observed that axis component of velocity increased gradually when pitch angle increased from $0^{\circ}\;to\;20^{\circ}$. Finally, designed the shapes of D/S(Down Stream) in duct that agreed inlet angle($\delta$) of stationary blades with pitch angle($\beta$) of axial fan with centrifugal type and derived flow to duct medial, and changed the shape of motor-mount to reduce occurance of unstable vortex in tip of impeller, and embodied noise reduction and improvement of air flow rate through flow stabilization.

  • PDF

저소음 원심형 홴의 설계 프로그램 (Design Program of Low Noise Centrifugal Fans)

  • 박준철;손정민;김기황;이승배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.529-535
    • /
    • 2001
  • A centrifugal fan design code was developed and packaged together with iDesignFan/sup TM/ as new models. This code generate centrifugal forward curved and backward curved bladed impeller optimally. It also predicts the aerodynamic performance and the overall sound pressure level of the rotating fan by assuming steady blade loading. The overall sound pressure level is used as an input parameter from the third loop of the designing process to acquire the most silent fan for the given aerodynamic performance parameters. With this kind of inverse design concept used in the code, the period of designing a fan is significantly shortened. A centrifugal fan design code, developed in this study and included in iDesignFan/sup TM/, predicts the aerodynamic performance such as design flow rate and static pressure. The aerodynamic performance in the design and off-design conditions is calculated by using the mean line analysis. For the steady loading calculation, the lift force distribution in a blade is used.

  • PDF

중첩선과 단면형상을 고려한 축류 송풍기 날개의 최적설계 (Optimization of Stacking Line and Blade Profile for Design of Axial Flow Fan Blade)

  • 압두스 사마드;이기상;정상호;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.420-423
    • /
    • 2008
  • This present work is to find optimum design of a NACA65 axial fan blade with weighted average surrogate model. The numerical analysis by Reynolds-average Navier-Stokes equations with shear stress turbulence(SST) is discretized by finite volume approximations and solved on hexahedral grids for flow analysis. The blade aerodynamic shape is modified by six design variables for the optimization. The blade profile as well as stacking line is modified to enhance blade total efficiency. Six design variables, airfoil maximum camber, maximum camber location, leading edge radius, trailing edge radius, lean angle at 50% span and lean angle at 100% span, are selected for blade profile to enhance the total efficiency. The PBA model which is basically weighted average of the basis surrogates is used to find the optimal design in the design space from the constructed response surface model for the objective function. By the optimization, the total efficiency is increased by 1.4%.

  • PDF

공력음향학적 특성을 고려한 시로코 팬의 설계 방법 (Design Method of the Sirocco Fan Considering Aeroacoustic Performance Characteristics)

  • 이찬
    • 한국유체기계학회 논문집
    • /
    • 제13권2호
    • /
    • pp.59-64
    • /
    • 2010
  • A design method of Sirocco fan is developed for constructing 3-D impeller and scroll geometries, and for predicting both the aerodynamic performance and the noise characteristics of the designed fan. The aerodynamic blading design of fan is conducted by blade angle, camber line determinations and airfoil thickness distribution, and then the scroll geometry of fan is designed by using logarithmic spiral. The aerodynamic performance of designed fan is predicted by the meanline analysis with flow blockage, slip and pressure loss correlations. Based on the predicted performance data, fan noise is predicted by two models for cutoff frequency and broadband noise sources. The present predictions for the performance and the noise level of actual fans are well agreed with measurement results.

NSGA-II 를 통한 송풍기 블레이드의 다중목적함수 최적화 (Multi-Objective Optimization of a Fan Blade Using NSGA-II)

  • 이기상;김광용;압두스사마드
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2690-2695
    • /
    • 2007
  • This work presents numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis. Reynolds-averaged Navier-Stokes (RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.

  • PDF

Multi-Objective Shape Optimization of an Axial Fan Blade

  • Samad, Abdus;Lee, Ki-Sang;Kim, Kwang-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2008
  • Numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm(NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis is presented in this work. Reynolds-averaged Navier-Stokes(RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.

설계파라미터 변경에 의한 고속버스용 엔진 냉각 팬의 저소음화 연구 (A Study on the Noise Reduction of the Engine Cooing Fan of an Express Bus by Change of Design Parameters)

  • Jae-Eung OH;You-Yub LEE;Hyun-Jin Sim;Mon-Kab Joe
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.333.1-333
    • /
    • 2002
  • This paper suggests the noise reduction method of the engine cooling fan. It was estimated the fannoise contribution at the engine room and identified the noise source at the rotating fan by sound intensity method, first. And it has been developed the program for predicting the noise spectrum of axial flow fan. The radiated acoustic pressure is expressed the discrete frequency noise peaks at BPF and its harmonics and the line spectrum at the broad band by the noise generation mechanisms. In this paper it is shown that the comparison of the measuted and calculaed noise spectra of fn for the validation of the noise predictiong program. And this paper presents the characteristics of a fan noise due to modify the design parameters. Accordingly, it was obtained the design parameter values for noise reduction of fan.

  • PDF

설계 파라미터 변경에 의한 고속 버스용 엔진 냉각 홴의 저소음화 연구 (A Study on the Noise Reduction of the Engine Cooing Fan of a Express Bus by Modification of Design Parameters)

  • 이유엽;조용구;이충휘;오재응
    • 한국소음진동공학회논문집
    • /
    • 제13권4호
    • /
    • pp.258-265
    • /
    • 2003
  • This paper suggests the noise reduction method of the engine cooling fan. The fan noise contribution to the OASPL of engine room was estimated and the noise source was identified for the rotating fan by sound intensity method. And the program for Predicting the noise spectrum of axial flow fan was also developed. The radiated acoustic pressure is expressed in terms of discrete frequency noise Peaks at BPF and its harmonics and the line spectrum at the broad band by the proposed noise generation mechanisms. In this Paper, it Is shown that the comparison of the measured and calculated noise spectra of fan validates the noise predicting program. And this paper presents the characteristics of the fan noise in order to modify the design parameters. Accordingly, the design parameters were determined for the noise reduction of the fan.