• Title/Summary/Keyword: Line Marker

Search Result 299, Processing Time 0.133 seconds

Marker Assisted Selection of Brown Planthopper Resistance and Development of Multi-Resistance to Insect and Diseases in Rice (Oryza sativa L.) (DNA 마커를 이용한 벼멸구 저항성 선발 및 복합내병충성 벼 계통 육성)

  • Lee, Jong-Hee;Yeo, Un-Sang;Cho, Jun-Hyun;Lee, Ji-Yoon;Song, You-Chun;Shin, Mun-Sik;Kang, Hang-Won;Sohn, Jae-Keun
    • Korean Journal of Breeding Science
    • /
    • v.43 no.5
    • /
    • pp.413-421
    • /
    • 2011
  • The main objective of this study was to develop the multi-resistance lines to insects(brown planthopper; BPH, rice green leafhopper; GRH) and disease(blast; BL, bacterial blight; BB and rice stripe virus disease;RSV) with good grain quality and plant type by combining conventional breeding and marker assisted selection(MAS) and to eliminate the linkage drag effects between Bph1 gene and culm length, we conducted MAS of Bph1 gene in advanced backcross and double cross progenies. 'Nampyeong', 'Junam' and 'Milyang220' were used as the parent in this study. 'Milyang220' was used as the donor of brown planthopper resistance gene Bph1 with tall culm length. Two backcross progenies were developed using two recipients 'Nampyeong' carrying GRH resistance gene Grh3(t) with good grain appearance and 'Junam' harboring bacterial blight resistance gene Xa3 with short culm length. Two $BC_1$ generations were resulted from the backcrossing of the $F_1$ plants with recurrent parents 'Nampyeong' and 'Junam'. The second rounds of backcrossing($BC_2$) were derived from the cross of selected resistant $BC_1F_1$ plants based on heterozygous genotype of RM28493 linked to Bph1 gene. The double crossed population was constructed from the cross of between each heterozygous $BC_2F_1$ plants at RM28493 locus of '$Nampyeong^*3$ / Milyang220' and '$Junam^*3$ / Milyang220'., The homozygous alleles in Bph1 gene were selected using co-dominant DNA marker RM28493 in double crossed population. Eighty-five lines with multi-resistance to BL, BB, RSV, GRH and BPH were selected by bio-assay and MAS in generation of double crossing. The culm length, head rice ratio and yield of the selected multi resistance lines was ranged from 71 to 88 cm, from 51 to 93%, from 449 to 629 kg/10a. respectively. We can select a promising multi resistance line similar with 'Nampyeong' of major agronomic traits such as culm legnth, head rice ratio and yield. It was designated as Milyang265. Finally this study was developed the multi resistant varieties against to insects and diseases with the good grain quality 'Milyang265' by the advanced backcross and double cross combining MAS and it can be used as genetic resources of multi-resistance to insect and diseases in rice breeding programs.

Improvement of Seedling Establishment in Wet Direct Seeding of Rice using the Anaerobic Germination Tolerance Gene Derived from Weedy Photoblastic Rice (잡초벼 PBR 혐기발아 내성 유전자 활용 벼 담수직파 초기 입모 개선)

  • Jeong, Jong-Min;Mo, Youngjun;Baek, Man-Kee;Kim, Woo-Jae;Cho, Young-Chan;Ha, Su-Kyung;Kim, Jinhee;Jeung, Ji-Ung;Kim, Suk-Man
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.3
    • /
    • pp.161-171
    • /
    • 2020
  • Direct seeding is one of the rice seedling establishment methods that is increasingly being practiced by farmers to save labor and reduce costs. However, this method often causes poor germination under flooding conditions after sowing. In this study, we developed japonica elite lines with quantitative trait loci (QTL) associated with anaerobic germination (AG) tolerance to overcome poor germination and seedling establishment in wet direct seeding. The QTL introgression lines were developed from a cross between weedy photoblastic rice as the AG donor and the Nampyeong variety via phenotypic and genotypic selection. Compared to Nampyeong, the survival rates of the selected lines were improved by approximately 50% and 240% under field and greenhouse conditions, respectively. To improve selection efficiency by marker assisted selection, the QTL markers associated with AG tolerance were converted to cleaved amplified polymorphic sequence markers designed based on next-generation sequence analysis. These lines retained similar agronomic traits and yield potential to the parent, Nampyeong. Among these lines, we selected the most promising line, which exhibited high survival rate and good agricultural traits under flooding conditions and named the line as Jeonju643. This line will contribute to breeding programs aiming to develop rice cultivars adapted to wet direct seeding. This study demonstrates the successful application of marker-assisted selection to targeted introgression of anaerobic genes into a premium quality japonica rice variety.

Development of Near-Isogenic Line of japonica Rice Cultivar Saenuri without Lipoxygenase-3 (새누리 벼 품종 배경 lipoxygenase-3 결핍 자포니카 근동질계통 개발)

  • Park, Hyun-Su;Lee, Keon-Mi;Kim, Ki-Young;Kim, Jeong-Ju;Shin, Woon-Cheol;Baek, Man-Kee;Kim, Choon-Song;Park, Seul-Gi;Lee, Chang-Min;Suh, Jung-Pil;Cho, Young-Chan
    • Korean Journal of Breeding Science
    • /
    • v.51 no.3
    • /
    • pp.190-200
    • /
    • 2019
  • It is reported that the absence of lipoxygenase-3 (LOX-3) may contribute to a reduction in stale flavor after the storage of rice. To improve the quality of stored rice of the Korean japonica rice cultivar, we conducted a breeding program to develop near-isogenic rice without LOX-3 in the genetic background of Saenuri, a mega variety of Korea. In the first step of the breeding program, we used a donor parent of LOX-3 null, Daw Dam, and a recurrent japonica parent, Sindongjin, to develop HR27873-AC12 by backcross (BC1), color test for introgression of lox-3, and anther culture for rapid fixation. In the second step, we used the donor parent, HR27873-AC12, and the recurrent parent, Saenuri, to develop HR28896-31-3-1-1 by backcross (BC1), marker-assisted selection (MAS) for lox-3, and phenotypic selection (PS) for agronomic traits. Finally, in the third step, we developed HR30960-186-2-1-2-1 (Jeonju624), derived from a cross between Saenuri and HR28896-31-3-1-1, by MAS for lox-3 and PS with high selection pressure for agronomic characteristics. Jeonju624 was confirmed with the introgression of lox-3 by molecular marker. Jeonju624 was a mid-late maturing rice with similar agronomic characteristics to Saenuri, lodging tolerance with short culm, erect plant architecture, and resistance to bacterial blight and rice stripe virus. The yield components of Jeonju624 were mostly similar to Saenuri, except for the 1,000-grain weight of brown rice. The appearance of the grain of Jeonju624 was better than that of Saenuri, and the characteristics of cooked rice were similar to those of Saenuri. In the genetic background analysis using 406 KASP (Kompetitive Allele-Specific PCR) markers, Jeonju624 was confirmed to be the near-isogenic line (NIL) of Saenuri with a 95.8% recovery rate. Jeonju624 is the NIL of Saenuri without LOX-3, and overcomes the linkage drag of Daw Dam with similar agronomic characteristics and genetic background to Saenuri. Jeonju624 can be utilized as a practical cultivar to improve the quality of stored rice, breeding material for the introgression of lox-3, and genetic material to elucidate the effect of introgressed genes.

Identification of a Locus Associated with Resistance to Phytophthora sojae in the Soybean Elite Line 'CheonAl' (콩 우수 계통 '천알'에서 발견한 역병 저항성 유전자좌)

  • Hee Jin You;Eun Ji Kang;In Jeong Kang;Ji-Min Kim;Sung-Taeg Kang;Sungwoo Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.134-146
    • /
    • 2023
  • Phytophthora root rot (PRR) is a major soybean disease caused by an oomycete, Phytophthora sojae. PRR can be severe in poorly drained fields or wet soils. The disease management primarily relies on resistance genes called Rps (resistance to P. sojae). This study aimed to identify resistance loci associated with resistance to P. sojae isolate 40468 in Daepung × CheonAl recombinant inbred line (RIL) population. CheonAl is resistant to the isolate, while Daepung is generally susceptible. We genotyped the parents and RIL population via high-throughput single nucleotide polymorphism genotyping and constructed a set of genetic maps. The presence or absence of resistance to P. sojae was evaluated via hypocotyl inoculation technique, and phenotypic distribution fit to a ratio of 1:1 (R:S) (χ2 = 0.57, p = 0.75), indicating single gene mediated inheritance. Single-marker association and the linkage analysis identified a highly significant genomic region of 55.9~56.4 megabase pairs on chromosome 18 that explained ~98% of phenotypic variance. Many previous studies have reported several Rps genes in this region, and also it contains nine genes that are annotated to code leucine-rich repeat or serine/threonine kinase within the approximate 500 kilobase pairs interval based on the reference genome database. CheonAl is the first domestic soybean genotype characterized for resistance against P. sojae isolate 40468. Therefore, CheonAl could be a valuable genetic source for breeding resistance to P. sojae.

Establishment of an Allo-Transplantable Hamster Cholangiocarcinoma Cell Line and Its Application for In Vivo Screening of Anti-cancer Drugs

  • Puthdee, Nattapong;Vaeteewoottacharn, Kulthida;Seubwai, Wunchana;Wonkchalee, Orasa;Keawkong, Worasak;Juasook, Amornrat;Pinloar, Somchai;Pairojkul, Chawalit;Wongkham, Chaisiri;Okada, Seiji;Boonmars, Thidarut;Wongkham, Sopit
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.6
    • /
    • pp.711-717
    • /
    • 2013
  • Opisthorchis viverrini (O. viverrini) is a well-known causative agent of cholangiocarcinoma (CCA) in humans. CCA is very resistant to chemotherapy and is frequently fatal. To understand the pathogenesis of CCA in humans, a rodent model was developed. However, the development of CCA in rodents is time-consuming and the xenograft-transplantation model of human CCA in immunodeficient mice is costly. Therefore, the establishment of an in vivo screening model for O. viverrini-associated CCA treatment was of interest. We developed a hamster CCA cell line, Ham-1, derived from the CCA tissue of O. viverrini-infected and N-nitrosodimethylamine-treated Syrian golden hamsters. Ham-1 has been maintained in Dulbecco's Modified Essential Medium supplemented with 10% fetal bovine serum for more than 30 subcultures. These cells are mostly diploid (2n=44) with some being polyploid. Tumorigenic properties of Ham-1 were demonstrated by allograft transplantation in hamsters. The transplanted tissues were highly proliferative and exhibited a glandular-like structure retaining a bile duct marker, cytokeratin 19. The usefulness of this for in vivo model was demonstrated by berberine treatment, a traditional medicine that is active against various cancers. Growth inhibitory effects of berberine, mainly by an induction of G1 cell cycle arrest, were observed in vitro and in vivo. In summary, we developed the allo-transplantable hamster CCA cell line, which can be used for chemotherapeutic drug testing in vitro and in vivo.

Increased Genotoxicity of N'-methyl-N'-nitroguanidine by Oxidative Stress (산화적 스트레스에 의한 N'-methyl-N'-nitroguanidine의 유전독성증가)

  • Kang, Jin-Seok;Jung, Ki-Kyung;Suh, Soo-Kyung;Kim, Joo-Hwan;Lee, Hwa-Ok;Jung, Hai-Kwan;Kim, Seung-Hee;Park, Sue-Nie
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.4
    • /
    • pp.357-366
    • /
    • 2007
  • To investigate the possible enhancement of genotoxicity in stress environment, we examined the of effect of genotoxic material in oxidative stress-induced condition using human tell line. Human lymphoblast cell line, TK6 was treated with hydrogen peroxide ($H_2O_2$) for induction of oxidative stress, and treated with N'-methyl-N'-nitroguanidine (MNNG), af a genetoxic material. We carried out MTS assay to set treatment doses. TK6 was treated with $H_2O_2$ at 6.75 (low dote) or $13.5\;{\mu}M$ (high dose) for 2 h, and treated with MNNG af 0.117 (low dose), 0.234 (middle dose), $0.468\;{\mu}M$ (high dose) for 2 h. As results, a treatment of MNNG induced DNA dam age as dose dependently. And TK6 treated with $H_2O_2$ at low as well as high dose followed by MNNG treatment showed higher DNA damage compared to MNNG alone treated groups. Malondialdehyde, as a marker of lipid peroxidation was increased in $H_2O_2$ and MNNG treated groups. Real-time RT-PCR analyses for expression of several antioxidative enzymes showed that catalase mRNA and glutathione peroxidase 1 mRNA expression were decreased in $H_2O_2$ and MNNG treated groups. Taken together, we conclude that genotoxicity induced by MNNG is enhanced in a condition of oxidative stress induced by $H_2O_2$ and it suggests that it should be associated with induction of lipid peroxidation and decrease of antioxidant enzymes.

Genetic Analysis on the Bacterial Blight Resistance of Suweon497, a Rice Breeding Line Developed through Wide Hybridization (벼 종간교잡 후대계통 '수원497호'의 흰잎마름병 저항성에 대한 유전분석)

  • Jeung, Ji Ung;Roh, Tae Hwan;Kang, Kyung Ho;Jeong, Jong Min;Kim, Myeong Ki;Kim, Yeon Gyu
    • Korean Journal of Breeding Science
    • /
    • v.43 no.1
    • /
    • pp.81-91
    • /
    • 2011
  • Rice wild relatives have been recognized as reservoirs of genetic reinforcements to improve cultivating rice against biotic and abiotic stresses. A wild relative, Oryza. minuta(BBCC; Acc. 101141), was hybridized with a Korean Japonica cultivar, 'Hwaseong'(AA), followed by ovule culture and several times of back crossings to overcome high level of sterility. During evaluation of the introgression lines, breeding line exhibited resistance to bacterial blight with reasonable agronomic performances, and nominated as an elite breeding line, the 'Suweon497'. A mapping population, to dissect genetic basis of the resistance, was constructed by using $F_2$ progenies of the 'Suweon497' ${\times}$ 'Milyang23'. Association analysis between SSR marker genotypes and pathogenisity levels of each $F_2$ progeny revealed the end terminal region of rice chromosome 11 as the nesting place for the wild rice derived bacterial blight resistance gene, where at least four other genes, Xa3, Xa4, Xa26 and Xa31, have been reported.

Application of Transposable Elements as Molecular-marker for Cancer Diagnosis (암 진단 분자 마커로서 이동성 유전인자의 응용)

  • Kim, Hyemin;Gim, Jeong-An;Woo, Hyojeong;Hong, Jeonghyeon;Kim, Jinyeop;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1215-1224
    • /
    • 2017
  • Until now, various oncogenic pathways were idenfied. The accumulation of DNA mutation induces genomic instability in the cell, and it makes cancer. The development of bioinformatics and genomics, to find the precise and reliable biomarker is available. This biomarker could be applied the early-dignosis, prediction and convalescence of cancer. Recently, Transposable elements (TEs) have been attracted as the regulator of genes, because they occupy a half of human genome, and the cause of various diseases. TEs induce DNA mutation, as well as the regulation of gene expression, that makes to cancer development. So, we confirmed the relationship between TEs and colon cancer, and provided the clue for colon cancer biomarker. First, we confirmed long interspersed nuclear element-1 (LINE-1), Alu, and long terminal repeats (LTRs) and their relationship to colon cancer. Because these elements have large composition and enormous effect to the human genome. Interestingly, colon cancer specific patterns were detected, such as the hypomethylation of LINE-1, LINE-1 insertion in the APC gene, hypo- or hypermethylation of Alu, and isoform derived from LTR insertion. Moreover, hypomethylation of LINE-1 in proto-oncogene is used as the biomarker of colon cancer metastasis, and MLH1 mutation induced by Alu is detected in familial or hereditary colon cancer. The genes, effected by TEs, were analyzed their expression patterns by in silico analysis. Then, we provided tissue- and gender-specific expression patterns. This information can provide reliable cancer biomarker, and apply to prediction and diagnosis of colon cancer.

Analysis of inter-fraction and intra-fraction errors during volumetric modulated arc therapy in Pancreas Ca (호흡 동조 췌장 암 용적 세기조절 회전 치료 시 Inter-fraction Intra-fraction 분석)

  • Jo, Young Pil;Seo, Dong Rin;Hong, Taek Kyun;Kang, Tae Yeong;Beck, Geum Mun;Hong, Dong Ki;Yun, In Ha;Kim, Jin San
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.247-256
    • /
    • 2014
  • Purpose : To assess target motion during radiotherapy by quantifying daily setup errors and inter-fractional and intra-fractional movements of pancreatic fiducials. Materials and Methods : Eleven patients were treated via stereotactic body radiotherapy (SBRT) with volumetric modulated arc therapy. Bony setup errors were calculated using cone beam computed tomography (CBCT). Inter-fractional and intrafractional fiducial (seed) motion was determined via cone beam computed tomography (CBCT) projections and orthogonal fluoroscopy. Results : Using an off-line correction protocol, setup errors were 0.0 (-1.7-4.0), 0.3 (-0.5-3.0), and 0.0 (-4.1-6.6) mm for the left-right, anterior-posterior, and superior-inferior directions respectively. Random inter-fractional setup errors in the mean fiducial positions were -0.1, -1.1, and -2.3 mm respectively. Intra-fractional fiducial margins were 9.9, 7.8, and 12.5 mm, respectively. Conclusion : Online inter-fractional and intra-fractional corrections based on daily kV images and CBCT expedites SBRT of pancreatic cancer. Importantly, inter-fractional and intra-fractional motion needs to be measured regularly during treatment of pancreatic cancer to account for variations in patient respiration.

Sequencing, Genomic Structure, Chromosomal Mapping and Association Study of the Porcine ADAMTS1 Gene with Litter Size

  • Yue, K.;Peng, J.;Zheng, R.;Li, J.L.;Chen, J.F.;Li, F.E.;Dai, L.H.;Ding, SH.H.;Guo, W.H.;Xu, N.Y.;Xiong, Y.ZH.;Jiang, S.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.917-922
    • /
    • 2008
  • A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif (ADAMTS1) plays a critical role in follicular rupture and represents a major advance in the proteolytic events that control ovulation. In this study, a 9,026-bp DNA sequence containing the full coding region, all 8 introns and part of the 5'and 3' untranslated region of the porcine ADAMTS1 gene was obtained. Analysis of the ADAMTS1 gene using the porcine radiation hybrid panel indicated that pig ADAMTS1 is closely linkage with microsatellite marker S0215, located on SSC13q49. The open reading frame of its cDNA covered 2,844 bp and encoded 947 amino acids. The coding region of porcine ADAMTS1 as determined by sequence alignments shared 85% and 81% identity with human and mouse cDNAs, respectively. The deduced protein contained 947 amino acids showing 85% sequence similarity both to the human and mouse proteins, respectively. Comparative sequencing of three pig breeds revealed one single nucleotide polymorphism (SNP) within exon 7 of which a G-C substitution at position 6006 changes a codon for arginine into a codon for proline. The substitution was situated within a PvuII recognition site and developed as a PCR-RFLP marker for further use in population variation investigations and association analysis with litter size. Allele frequencies of this SNP were investigated in seven pig breeds/lines. An association analysis in a new Qingping female line suggested that different ADAMTS1 genotypes have significant differences in litter size (p<0.01).