• Title/Summary/Keyword: Line Crack

Search Result 348, Processing Time 0.023 seconds

Study on hydrogen embrittlement of fuel line for PEMFC (PEMFC 연료 공급관의 수소취성에 관한 연구)

  • Park, Kwang-Jin;Kim, Jung-Hyun;Jeong, Jae-Hwa;Bae, Joong-Myeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1992-1996
    • /
    • 2007
  • This study focuses on the hydrogen embrittlement of iron tube for fuel line of PEMFC (Proton Exchange Membrane Fuel Cell). PEMFC is operated by feed of hydrogen as a reactant and steam for proton conductivity of membrane. However, the environment with hydrogen and steam occur the hydrogen-induced degradation in BOP system. When iron tube was exposed to hydrogen and steam condition for 24 hours, the oxide layer on the surface was decreased by reduction. When the ambient temperature was 90$^{\circ}C$ micro cracks were found on the surface than any other temperature. The mechanical strength of iron tube was 3% lower than that of non-experiment tube. Maximum tensile stress was decreased 8%.

  • PDF

J-Integral under Transient Temperature State (천이온도 상태에서의 J적분)

  • 이강용;박정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1781-1791
    • /
    • 1991
  • For the cracked plate under transient temperature distribution, J-integral is expressed in the form of line integral by using convolution integral. The J$_{1}$ integral is calculated for a through line center cracked steel plate under thermal and mechanical loading conditions and the calculated values are in good agreement with previous results. The effect of inertia term on the J$_{1}$ integral is not negligible for a glass but for a steel. For the glass plate, the rates of J$_{1}$ integral value to time increase if the values of material properties such as specific heat, thermal conductivity, thermal diffusivity and Young`s modulus as well as crack length and temperature difference in cracked edge increase.

Forming Characteristics of Laser Welded Tailored Blanks III : Stretch Forming Characteristics (레이저 용접 테일러드 블랭크의 기본 성형특성 III : 신장성형 특성)

  • Park, Gi-Cheol;Han, Su-Sik;Jin, Jo-Gwan;Gwon, O-Jun
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.354-363
    • /
    • 1998
  • In order to analyze the stretch forming characteristics of tailored blanks, laser welded blanks of different thickness and strength combinations were prepared and stretching tests were done. The stretching formability of laser welded blanks was reduced as increasing the deformation restraining force ($strength{\times}thickness$) ratio between two welded sheets. Weld line movement was attributed to strain concentration at weaker sheets and resulted in fracture at weaker sid, so that fracture could be predicted by the forming limit of the weak sheet. In the case of a welded blank with the similar deformation restraining force rations between two welded sheets, crack occurred at weld and its forming limit was about 15% less than the base sheet. The effects of lubrication and weld line position on stretch-ing formability were also investigated by experiments. Lower friction did not always give better formability for tailored blanks. Stretching formability was observed to be improved as increasing the area of weak sheet.

  • PDF

OPGW Corrosion Detection Using Nondestructive Test Method

  • Jeong, Jae-Kee;Yoon, Gi-Gab;Kang, Ji-Won;Yang, Hai-Won
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.45-50
    • /
    • 1998
  • This paper deals with some characteristics of a nondestructive eddy current detector to measure OPGW(Composite overhead ground wire with optical fiber) corrosion. This detector is designed to automatically run on OPGW and to continuously inspect the corrosion of the line. The impedance of the eddy current coil changing by any corrosion phenomenon of OPGW is analyzed. Several performances of the detector are described and experimental procedures and test results are also given. As a result, it is shown that the implemented detector can be measured some quantitative data for crack, broken wires or severe deteriorations in OPGW. This nondestructive test method would be applied to improve the reliability and efficiency of transmission line in service.

  • PDF

Adhesion Characteristics of Surface Treated Polyurethane Foam Core Sandwich Structures (표면 처리된 폴리우레탄 폼 샌드위치 구조의 접합 특성)

  • Lee, Chang-Sup;Lim, Tae-Seong;Lee, Dai-Gil
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.38-43
    • /
    • 2001
  • The interfacial adhesive joining characteristics of the foams are very important for the structural integrity of sandwich structures. Peel strength is one of the best criteria for the interfacial characteristics of the sandwich structures and peel energy is most commonly used for the interfacial characteristics. The peel strength is the first peak force per unit width of bond line required to produce progressive separation by the wedge or other crack opening type action of two adherends where one or both undergo significant bending and the peel energy is the surface active energy per unit width of bond line. In this work, to investigate the strengthening effect of resin treatment on the interfacial surface of foam material, peel strength and peel energy of epoxy resin treated polyurethane foam core sandwich structures were obtained by the cleavage peel tests and compared with those of non surface treated polyurethane foam core sandwich structures.

  • PDF

Active Vibration Measuring Sensor for Nondestructive Test of Electric Power Transmission Line Insulators (송전선로 애자의 비파괴 검사를 위한 능동형 진동 측정센서)

  • Lee, Jae-Kyung;Park, Joon-Young;Cho, Byung-Hak
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.424-430
    • /
    • 2008
  • A new active vibration measurement system in electric power transmission line is presented, using in the nondestructive test. With a permanent magnet and a couple of coils, the system exerts impact force to a test object and in turn picks up the vibration of the object. The natural frequency with the amplitude obtained from the system are used as a basis for the detection of defects in the object. The system is controlled by an electronic device designed to facilitate the fully automated testing process with consistent repeatability and reliability which are essential to the nondestructive test. The system is expected to be applied to the wide area of defect detection including the classification of mechanical parts in production and inspection processes.

Careful Determination of Inservice Inspection of piping by Computer Analysis in Nuclear Power Plant (배관해석에 의한 원전 배관부의 검사부위 선정)

  • Lim, H.T.;Lee, S.L.;Lee, J.P.;Kim, B.C.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.2
    • /
    • pp.14-20
    • /
    • 1992
  • Stress analysis has been performed using computer program ANSYS in the pressurizer surge line in accordance with ASME Sec. III in order to predict possibility of fatigue failure due to thermal stratification phenomena in pipes connected to reactor coolant system of nuclear power plants. Highly vulnerable area to crack generation has been chosen by the analysis of fatigue due to thermal stress in pressurizer surge line. This kind of result can be helpful to choose the location requiring intensive care during inservice inspection of nuclear power plants.

  • PDF

Prediction of Crack Pattern of Continuously Reinforced Concrete Track Induced by Temperature Change and Shrinkage of Concrete (온도 변화와 콘크리트 수축에 의한 연속철근 콘크리트궤도의 균열 발생 패턴 예측)

  • Bae, Sung Geun;Choi, Seongcheol;Jang, Seung Yup;Cha, Soo Won
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.270-280
    • /
    • 2014
  • In this study, to examine the causes of cracks in continuously reinforced concrete tracks (CRCTs) and the main factors affecting cracking, a field survey on the status of cracks and crack patterns in the Gyeong-bu high speed line was conducted, and the crack patterns of CRCT due to the temperature difference between the top of the slab (TCL) and the bottom of the subbase (HSB) and the drying shrinkage of concrete were predicted by a nonlinear finite element model considering the structure of CRCT. The results of the numerical analysis show that cracks will be developed at the interface between the sleeper and the TCL, and under the sleeper due to the temperature difference and concrete shrinkage. This corresponds well to the crack locations found in the field. Also, it is found that the most significant factors are the coefficient of thermal expansion with respect to the temperature difference, and the drying shrinkage strain with respect to shrinkage. According to the results, the reinforcement ratio should be carefully determined considering the structures of CRCT because the crack spacing is not always proportional to the reinforcement ratio due to the sleepers embedded in the TCL.

Studies on effects of calibration methods and current lead position on the direct current potential drop method for crack length measurement (직류전압강하법에 의한 균열길이 측정에 미치는 도선의 위치 및 보정방법의 영향에 관한 연구)

  • Cho, C.C.;Kim, I.S.;Kim, S.S.;Choe, S.J.;Hur, B.Y.
    • Analytical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.300-306
    • /
    • 1997
  • The effective resolution of the direct current potential drop (DCPD) method for crack length determination is strongly affected by a number of factors including wire locations and calibration method. In the present study, the effects of wire locations, thermal EMF and reference probe locations on the accuracy of calibration methods, including Hicks-Pickard equation and Johnson's equation, were examined with the CT specimens which were nine times larger than the standard specimen. In light of experimental results, it was found that Hicks-Pickard equation can accurately represent the a/W-V/Vo relationship when current input wire is located at the load line. It was also found that the accuracy of DCPD method can be greatly improved with the thermal EMF calibration and the use of Vo value at a/W = 0.241. The use of reference potential was found to be impractical when current input wire is located at the load line.

  • PDF

The Failure Analysis of Double Pipe for Insulation Used Power Plant by Grooving Corrosion (발전소용 이중보온용 강관의 홈부식(Grooving Corrosion)에 의한 파손 분석)

  • Ham, Jong-Oh;Park, Ki-Duck;Park, Sung-Jin;Sun, Il-Sik
    • Journal of Applied Reliability
    • /
    • v.15 no.3
    • /
    • pp.197-206
    • /
    • 2015
  • Failure analysis of pre-insulated pipe (SPPS 380, 400A) transporting high temperature water ($95{\sim}110^{\circ}C$) for a plant was carried out. The damaged area (${\Phi}5mm$) of pre-insulated pipe was found only on welds. The chemical composition of damaged pipe meets specification of carbon steel pipes for pressure service (KS D 3562). As results of microstructure analysis, crack propagated from outer to inside after pitting corrosion occurred on the outside surface. The non-metallic inclusion existed on the end of crack. And the non-metallic inclusion continuously and linearly formed along with the bond line of welds. Based on SEM-EDS analysis, the nonmetallic inclusions have higher Manganese (Mn) and Oxygen (O) content but sulfur (S) was not detected. As results of water quality analysis, hydrogen ion concentration and minerals like Fe, Mg, Si were in low level. But the content of dissolved oxygen (11.2 ppm) was slightly higher than that of standard. It seems that the cause of damaged pipe is grooving corrosion due to MnO inclusion formed on bond line and corrosion took place nearby welds.