• 제목/요약/키워드: Line Brake Pressure

검색결과 20건 처리시간 0.021초

Electronic Control of Braking Force Distribution for Vehicles Using a Direct Adaptive Fuzzy Controller

  • Kim, Hunmo;Kim, Seungdae;Sung, Yoon-Gyeoung
    • Journal of Mechanical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.66-80
    • /
    • 2001
  • In brake systems, a proportioning valve(P. V), which reduces the brake line pressure on each wheel cylinder for the anti-locking of rear wheels, is closely related to the safety of vehicles. However, it is impossible for current P. V. s to completely control brake line pressure because, mechanically, it is an open loop control system. In this paper we describe an electronic brake force distribution system using a direct adaptive fuzzy controller in order to completely control brake line pressure using a closed loop control system. The objective of the electronic brake force distribution system is to change the cut-in-pressure and the valve slop of the P. V in order to obtain better performance of the brake system than with mechanical systems.

  • PDF

공기 유압식 브레이크 라인 파손 사례 및 파손 분석 연구 (A Case Study on Failure and Analysis of Air Over Hydraulic Brake Line)

  • 박정만;박종진
    • 자동차안전학회지
    • /
    • 제12권2호
    • /
    • pp.47-55
    • /
    • 2020
  • In this case study, the brake line failure of air over hydraulic(AOH) brake system is described. AOH brake system is applied to commercial vehicles between 5 to 8 tons. It consists of a hydraulic system using compressed air and operates the air master to form hydraulic pressure to transfer braking power to the wheels. When the brake lines of the system applied to vehicles with high load capacity are damaged, the braking force of one shaft is lost, and the braking distance increases rapidly, leading to a big accident. Failure of the brake line occurs due to various causes such as road surface fragmentation, corrosion of the line, and aged deterioration of air brake hose. The braking force could be decreased even when a very small break in the form of a pin-hole occurs. However, it is difficult to find a part where the thickness of the line is thin due to stone pecking or corrosion generated in the pin-hole formed on the brake line located under the lower part of the vehicle by the sensory evaluation or the conventional braking force test. Accordingly, it is necessary to analyze the condition and cause of the failure of the brake line more precisely when the accident investigation of the heavy vehicles, and also to examine the necessity of the advanced test for the aged brake line.

On-line Monitoring of Tribology Parameters and Fault Diagnosis for Disc Brake System

  • Yang Zhao-Jian;Kim Seock-Sam
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.224-228
    • /
    • 2003
  • The basic Principles and methods of the on-line monitoring of tribology parameters (friction coefficient and wear allowance) and fault diagnosis for the hoist disc brake system were introduced, the method were based on the spring force and oil pressure of the brake system and the hoist kinematics parameters. The experiment on the monitoring and diagnosis of hoist brake system were carried out. The research results showed: the monitoring and diagnosis methods are feasible.

  • PDF

디스크 정렬불량에 기인한 브레이크 스퀼소음의 실험해석 (Experimental Analysis on Brake Squeal Noise Due to Disk Misalignment)

  • 박주표;최연선
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.118-124
    • /
    • 2004
  • To investigate the mechanics of brake squeal noise, the sound and vibration of an actual brake system was measured using a brake dynamometer. The experimental results show that disk run-out due to the misalignment of brake disk varies with brake line pressure and becomes the important factor of brake squeal noise generation. Also, it was confirmed that the frequency of the squeal noise equals to the natural frequency of the disk bending mode.

철도차량 제동기의 압력제어에 관한 연구 (A Study on Pressure Control Method of Train Brake System)

  • 이한민;김길동;박성환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1909-1915
    • /
    • 2008
  • The brake systems of the rolling stocks are generally consisted of electrical and mechanical brake systems. Because of its inherent structure of the each brake system, the electrical brake system is mainly used at the high speed range while the mechanical brake system is used at the relatively lower speed range. It is desirable for the rolling stocks to apply the entire electrical brake system. However, since the brake force from electric brake system is not enough to stop the rolling stock within the legal stop distance. Therefore, the mechanical brake system is indispensable to rolling stocks. In general, the vast majority of the world trains are equipped with mechanical braking systems which use compressed air as the force to push block on to wheels or pads on to discs. These mechanical systems are known as air brake or pneumatic brakes. For the air brake system, basically huge scale air compressor is equipped and the long pipe line is complexively connected. Since mass of these air brake components, it is difficult to be a light weight equipment and the long pipe line raise the maintenance problem. In order to overcome these problems of air brake system, the hydraulic brake system is proposed in this research. The hydraulic brake system makes the whole weight of brake equipment be light and large braking force can be applied. Therefore, in this research, the validity and advantages of applying the hydraulic brake system are reviewed.

  • PDF

유압 브레이크계통의 과도맥동압력 제어특성에 관한 실험적 연구 (Experimental Study on the Control Characteristics of the Transient Pulsation Pressure in the Hydraulic Brake System)

  • 이주성;이계복;이충구
    • 한국산업융합학회 논문집
    • /
    • 제4권1호
    • /
    • pp.21-26
    • /
    • 2001
  • A method for the control of pulsating pressure transients in the hydraulic brake system has been presented and experimentally verified. This control is accomplished by installing flow restricting devices at appropriate locations in the brake oil pipe line. The experimental results presented are expected to provide a basis for transient control design of hydraulic brake systems.

  • PDF

도시철도 전차의 정위치 정차 제어에 관한 연구 (A Study on the precious stopping control for the automatic electric rail cars)

  • 박문규;김규식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.228-230
    • /
    • 2006
  • While trains perform a complete precision stopping control at stop point, it is essential to keep better commuters comfort in prompt. Because a train's brake force tends to increase a brake effort in a low speed and a low brake effort, a brake force in motor cars must be increased to keep better passenger comfort, to control the special braking qua1ities and to prevent the impact of the automatic coupler rather than trailer's, Rail cars must have a special braking process for the train stopping control. In the train stop mode, the train stopping control is designed to start at 20km/h. It starts by Dynamic brake blending, and then finally stops by only the friction. If these process are not exactly activated, the train may fail a complete precision stop. In this report, it studied the electric and friction brake processing during the precious stopping control. To achieve exact test results, the speed reference has to be reduced the calculated difference. In the precision stopping control. the ways of the keeping brake force in motor car was analyzed and some solutions of controling air pressure was brought up by means of direct test in main line, This study was based on line 5 in Seoul Metropolitan subway.

  • PDF

디스크 정렬불량에 기인한 브레이크 스퀼소음 (Brake Squeal Noise Due to Disk Misalignment)

  • 박주표;최연선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1690-1695
    • /
    • 2003
  • In order to investigate the mechanism of brake squeal noise, the sound and vibration of an actua1 brake system were measured using a brake dynamometer. The experimental results show that disc run-out varies with brake line pressure and the factor of squeal generation is the run-out due to the misalignment of brake disk. A three degrees of freedom friction model is developed for the disk brake system where the run-out effect and nonlinear friction characteristic are considered. The results of numerical analysis of the model agree well with the experimental results. Also, the stability analysis of the model was performed to predict the generation of brake squeal due to the design parameter modification of brake systems. The results show that the squeal generation depends on the nm-out rather than the friction characteristic between the pad and the disk of brake.

  • PDF

자동차 제동장치의 시뮬레이션 시험 기법에 관한 연구 (A Study on the Techniques of Simulation Test in Automotive Braking System)

  • 민규식;김형섭
    • 한국안전학회지
    • /
    • 제8권2호
    • /
    • pp.23-29
    • /
    • 1993
  • In this study, the method of deciding simulation test conditions is developed by computer program compared to actual vehicle test as accurately as possible. These results of analytical test conditions are conformed by simulation test using the brake dynamometer by comparison with test results of actual vehicle. Results of simulation test by these analytical results show good agreement with the vehicle test results. The analytical simulation test conditions provide the input data to brake dynamometer which follows : - each test inertia corresponding to braking deceleration - test condition of input control : brake line pressure - test condition of output control : braking torque

  • PDF

자동차 제동장치의 답력특성에 관한 연구 (A study on the characteristics of automotive brake pedal force)

  • 김형대;임윤철
    • 오토저널
    • /
    • 제15권2호
    • /
    • pp.64-75
    • /
    • 1993
  • In this study, the function of a hydraulic brake system with a vacuum booster is systematically analyzed according to the mutual relations which follow : - the brake pedal force vs. booster cylinder input force - the booster output force vs. master cylinder input force - the hydraulic line pressure vs. braking deceleration. A computer program is developed based on the theory which is able to predict and analyze the pedal force characteristics at the beginning of the initial stage of brake system design. Analytical results show good agreement with the experimental vehicle test.

  • PDF