• Title/Summary/Keyword: Line Array SONAR

Search Result 24, Processing Time 0.015 seconds

Left right discrimination performance improvement for the line array sonar system (선 배열 소나 시스템을 위한 좌 우 구분 성능 개선 기법)

  • Lee, Ho-Jun;Ahn, Jong-Min;Seo, Jong-Pill;Ahn, Jae-Kyun;Kim, Seong-Il;Chung, Jae-Hak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • This paper proposes a method to improve the left right discrimination performance by eliminating the imaginary target based on the frequency features of the beam pattern for bow array. The beamwidth of the imaginary target is wider than that of the real target. If an azimuth axis is considered as a time axis, the real and the imaginary targets can be assumed as high and low frequencies, respectively. To eliminate the imaginary target which has a low frequency component, we design a cut-off frequency of the High Pass Filter (HPF) using the back-lobe imaginary beamwidth. The real target is estimated by eliminating the imaginary target by applying HPF to the entire power of the beamformer output. Computer simulations show that the proposed method can increase the left right discrimination performance above 8 dB on average.

A Study on Passive Fish Finder in the Fishing Grounds near the Korean Peninsula - The Theoretical Study for Passive Fish Finder - (한국주변 어장에서의 수동어탐에 관한 연구 ( I ) - 이론적 고찰 -)

  • Kim, Sung-Boo;Chang, Jee-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.1
    • /
    • pp.6-10
    • /
    • 1986
  • The feasibility of passive detection of fishes which had been caught in the fishing grounds near the Korean peninsula was theoretically investigated. Considering the commercial importance and the acoustical informations readily identified, although many species of fish make noise, Croaker is clarified to be a representative fish for passive fish detection. Assuming a source level of the sound produced by croakers is given as 150-18OdB (re 1l'pa, 500 Hz bandwidth), The range detected by a passive line array sonar is estimated to be about 3-20km. In addition, the tonal noise (700~800Hz) made by croaker that is easily separated from underwater noise is expected to increase the ability to discriminate from the other species of fish.

  • PDF

Analysis of statistical characteristics of bistatic reverberation in the east sea (동해 해역에서 양상태 잔향음 통계적 특징 분석)

  • Yeom, Su-Hyeon;Yoon, Seunghyun;Yang, Haesang;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.435-445
    • /
    • 2022
  • In this study, the reverberation of a bistatic sonar operated in southeastern coast in the East Sea in July 2020 was analyzed. The reverberation sensor data were collected through an LFM sound source towed by a research vessel and a horizontal line array receiver 1 km to 5 km away from it. The reverberation sensor data was analyzed by various methods including geo-plot after signal processing. Through this, it was confirmed that the angle reflected from the sound source through the scatterer to the receiver has a dominant influence on the distribution of the reverberation sound, and the probability distribution characteristics of bistatic sonar reverberation varies for each beam. In addition, parametric factors of K distribution and Rayleigh distribution were estimated from the sample through moment method estimation. Using the Kolmogorov-Smirnov test at the confidence level of 0.05, the distribution probability of the data was analyzed. As a result, it could be observed that the reverberation follows a Rayleigh probability distribution, and it could be estimated that this was the effect of a low reverberation to noise ratio.

MVDR Beamformer for High Frequency Resolution Using Subband Decomposition (부대역을 이용한 MVDR 빔형성기의 주파수 분해능 향상 기법)

  • 이장식;박도현;김정수;이균경
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.62-68
    • /
    • 2002
  • It is well known that the MDVR beamforming outperforms the conventional delay-sum beamformer in the sense of noise rejection and bearing resolution. However, the MDVR method requires long observation time to achieve high frequency resolution. The STMV method uses the steered covariance matrix of sensor data, so it has an ability to form an adaptive weight vector from a single time-series snapshot. But it uses the same weight vector across all frequencies. In this paper, we propose an SSMV method. The basic idea of the SSMV method is to decompose a full frequency band into several subbands to acquire a weight vector for each subband, individually. Also the wrap may be divided into several subarrays in order to reduce a computational load and the bandwidth of each subband. Simulations using real sea trial data show that the proposed SSMV method has good performance with short observation time.