• Title/Summary/Keyword: Lindblad resonance

Search Result 3, Processing Time 0.02 seconds

EVOLUTION OF SELF-GRAVITATING GAS DISKS UNDER THE INFLUENCE OF A ROTATING BAR POTENTIAL

  • YUAN CHI;YEN DAVID C. C.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.197-201
    • /
    • 2005
  • It is well known that a rotating bar potential can transport angular momentum to the disk and hence cause the evolution of the disk. Such a process is particularly important in disk galaxies since it can result in fuelling AGNs and starburst ring activities. In this paper, we will present the numerical simulations to show how this mechanism works. The problem, however, is quite complicated. We classify our simulations according to the type of Lindbald resonances and try to single out the individual roles they play in the disk evolution. Among many interesting results, we emphasize the identification of the origin of the starburst rings and the dense circumnuclear molecular disks to the instability of the disk. Unlike most of the other simulations, the self-gravitation of the disk is emphasized in this study.

Long lived spiral structures in galaxies

  • Saha, Kanak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.31.1-31.1
    • /
    • 2017
  • Spiral structure in disk galaxies is modeled with ncollisionless N-body simulations including live disks, halos, and bulges with a range of masses. Two of these simulations make long-lasting and strong two-arm spiral wave modes that last for about 5 Gyr with constant pattern speed. These two had a light stellar disk and the largest values of the Toomre Q parameter in the inner region at the time the spirals formed, suggesting the presence of a Q-barrier to wave propagation resulting from the bulge. The relative bulge mass in these cases is about 10%. Models with weak two-arm spirals had pattern speeds that followed the radial dependence of the Inner Lindblad Resonance. In addition to these, we also report a few more cases where two-armed spirals are developed and are maintained for a several rotation time scales.

  • PDF

Gaseous Structures in Barred Galaxies: Effects of the Bar Strength

  • Kim, Woong-Tae;Seo, Woo-Young;Kim, Yonghwi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.73.1-73.1
    • /
    • 2012
  • We use hydrodynamic simulations to study the physical properties of gaseous structures in barred galaxies and their relationships with the bar strength. We vary the bar mass fbar relative to the spheroidal component as well as its aspect ratio. We derive expressions for the bar strength Qb and the radius where the maximum bar torque occurs. When applied to observations, these expressions suggest that bars in real galaxies are most likely to have fbar = 0.25-0.5. Dust lanes approximately follow one of x1-orbits and tend to be more straight under a stronger and more elongated bar. A nuclear ring of a conventional x2 type forms only when the bar is not so massive or elongated. The radius of an x2-type ring is generally smaller than the inner Lindblad resonance, decreases systematically with increasing Qb, evidencing that the ring position is not determined by the resonance but by the bar strength. Nuclear spirals exist only when the ring is of the x2-type and sufficiently large in size. Unlike the other features, nuclear spirals are transient in that they start out as being tightly-wound and weak, and then due to the nonlinear effect unwind and become stronger until turning into shocks, with an unwinding rate higher for larger Qb.

  • PDF