• Title/Summary/Keyword: Limited Storage Capacity

Search Result 122, Processing Time 0.029 seconds

A Robot System Maintained with Renewable Energy

  • Kim, Jaehyun;Moon, Chanwoo
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.98-105
    • /
    • 2019
  • Energy autonomy is a system that is sustained by energy from an independent and distributed source such as renewable energy. In this paper, we propose a robotic energy autonomy in which a robot obtains energy from a renewable energy source with a limited storage capacity. As an energy transfer method, wireless power transfer is used to solve the problem of the conventional contact charging method, mechanical complexity, and to obtain high energy transfer efficiency, the image information is used to align the transmitting and receiving coils accurately. A small scale thermoelectric energy source with boost converter, battery charger, and wireless power transfer coil is constructed and an actual charging experiment is conducted to verify the proposed autonomy system.

Deep Reinforcement Learning-Based Edge Caching in Heterogeneous Networks

  • Yoonjeong, Choi; Yujin, Lim
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.803-812
    • /
    • 2022
  • With the increasing number of mobile device users worldwide, utilizing mobile edge computing (MEC) devices close to users for content caching can reduce transmission latency than receiving content from a server or cloud. However, because MEC has limited storage capacity, it is necessary to determine the content types and sizes to be cached. In this study, we investigate a caching strategy that increases the hit ratio from small base stations (SBSs) for mobile users in a heterogeneous network consisting of one macro base station (MBS) and multiple SBSs. If there are several SBSs that users can access, the hit ratio can be improved by reducing duplicate content and increasing the diversity of content in SBSs. We propose a Deep Q-Network (DQN)-based caching strategy that considers time-varying content popularity and content redundancy in multiple SBSs. Content is stored in the SBS in a divided form using maximum distance separable (MDS) codes to enhance the diversity of the content. Experiments in various environments show that the proposed caching strategy outperforms the other methods in terms of hit ratio.

Polydopamine-coated chitosan hydrogels for enzyme immobilization

  • Chang Sup Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.512-518
    • /
    • 2023
  • To address inherent weaknesses such as low mechanical strength and limited enzyme loading capacity in conventional chitosan or alginate beads, an additional step involving the exchange of anionic surfactants with hydroxide ions was employed to prepare porous chitosan hydrogel capsules for enzyme immobilization. Consequently, excellent thermal stability and long-term storage stability were confirmed. Furthermore, coating the porous chitosan hydrogel capsules with polydopamine not only improved mechanical stability but also exhibited remarkable enzyme immobilization efficiency (97.6% for M1-D0.5). Additionally, it was demonstrated that the scope of application for chitosan hydrogel beads, prepared using conventional methods, could be further expanded by introducing an additional step of polydopamine coating. The enzyme immobilization matrix developed in this study can be selectively applied to suit specific purposes and is expected to be utilized as a support for the adsorption or covalent binding of various substances.

Study on the Ratio of Catchment Area to Benefited Area in Case of Reservior (저수지의 유역대 가리면적비의 연구(I))

  • 김동규
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.10 no.2
    • /
    • pp.1443-1453
    • /
    • 1968
  • The reservoir is one of the important partsof facilities for development of irrigation water in Korea. Accordingly, construction of the reservoir will be stressed in the field of future development of agricultural water resources. In the meantime, storage capacity is actually is limited to some extent with various conditions. Acreage of benefited area shall be determined according to such conditions as catchment area, precipitation and unit water requirment within benefited area. According to results of the past construction of the reservoir, the ratio of catchment area to benefited area would be 4:1 to 2.5:1 or catchment area is approximately 2.5 times larger and over than benefited area. In order words, it is the ordinary practice in the construction of reservoir that benefited area should be less than 1/2.5 times as large as catchment area. Moreover, limitation of catchment area would prevent largely the vast drought-stricken area from being benefited by irrigation facilites. This has been, in fact, caused by the fact that a good deal of water stored in the reservoir overflows wastefully through spillway of the reservoir at th time of flood season, and that only very little of the overflowed water is available for irrigation. However, if the more wasted water is stored during the flood season, the larger area of farmland can irrigated. That is, catchment area can reduced to less than 2.5 times as large as benefited area. On the other hand, it is afraid that such reduction should bring about the increase of unit storage capacity. And storage capacity being maximized, costs for construction of the reservoir will be raised too highly, thus making the economics feasibility unfavorable. The purpose of this study is to decide the ratio of catchment area to benefited area toward the minimum level as possible in consideration of the hydrological and economic aspects. Kopung Project which is located in Sosan-kun, Chungnam Province is taken as an example for the review and analysis in this study, and as an example for crop, rice is taken. After consideration of this project, we can find out that annual average inflow is 726mm and annual average water requirements is 811mm. And the ratio of catchment area to benefited area is 1.2:1. This means that catchment area can be reduced even to 1.2 times as large as benefited area. In conclusion, this study reveals that the construction of reservoir is feasible in view of economic and technical points provided that catchment area is more than 1.5 times as large as benefited area.

  • PDF

New curing method using gaseous oxidant on sweet potato (Ipomoea batatas)

  • Jin, Hyunjung;Kim, Wook
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.39-39
    • /
    • 2017
  • In Asia, sweet potato (Ipomoea batatas) is a very important crop for starch production. Approximately 74.3% of the total sweet potato production quantity is produced in Asia (FAO, 2014) and China is the largest producer of sweet potato. Post-harvest management is particularly important because it is difficult to maintain the quality as well as quantity of sweet potatoes. Despite the importance of post-harvest management, researches on sweet potato have been focused on production-related study such as breeding of new variety, improved techniques of cultivation, so there is limited research on storage after harvest. Curing is a normal practice after sweet potato harvest to promote wound healing and extend postharvest storage life. In Korea, harvested sweet potatoes are usually cured for 4 to 7 days at $30-33^{\circ}C$ and 80-95% relative humidity within one week. Since the optimum storage temperature of sweet potato is regarded as $15-20^{\circ}C$, additional facilities and costs are required to raise the temperature for curing. However, the majority of small farmers do not have the capacity to provide additional facilities and costs. This study was initiated to suggest a new curing method to accelerate the wound healing by applying chemical oxidation to the wound surface of sweet potato. Oxidative stress is known to play an important role in the synthesis of secondary metabolites including lignin. In addition, chemical oxidation can be applied to prevent spoilage caused by microorganisms. Powerful gaseous oxidant with excellent penetration ability and superior sterilization effect was selected for this study. Lignification, weight loss, and spoilage rate of artificially wounded sweet potatoes were investigated after oxidant fumigation. There were clear differences in morphological analysis such as lignification pattern, lignin deposition color, and continuity of lignified cell layers between oxidant-fumigated sweet potatoes and control. These results show that gaseous oxidant can be used to supplement or replace the curing practice, to improve shelf-life as well as curing cost reduction.

  • PDF

Physicochemical Behaviors of Oxygen and Sulfur in Li Batteries (리튬 전지에서 산소, 황의 물리화학적 거동)

  • Park, Dong-Won;Kim, Jin Won;Kim, Jongwon;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.247-252
    • /
    • 2012
  • Of late, the development of advanced batteries with high power density and capacity has been indispensible for pushing ahead with much wider applications to electric vehicles and smart IT devices. However, a conventional Li-ion battery contains a limited energy density due to various technological challenges such that other types of Li batteries including Li-S and Li-air have been extensively studied due to their interestingly high energy capacities. Sulfur and oxygen, of which both are cathode materials, showing similar physicochemical characteristics have widely been available which may also contribute to the commercialization of these batteries. In this review, we introduce some perspectives in improving these advanced Li batteries through several approaches such as the provision of porous cathode structures, the optimization of cathode-electrolyte interfaces and the modification of Li anodes.

Effect of Aging and Freezing Conditions on Meat Quality and Storage Stability of 1++ Grade Hanwoo Steer Beef: Implications for Shelf Life

  • Cho, Soohyun;Kang, Sun Moon;Seong, Pilnam;Kang, Geunho;Kim, Youngchoon;Kim, Jinhyung;Chang, Sunsik;Park, Beomyoung
    • Food Science of Animal Resources
    • /
    • v.37 no.3
    • /
    • pp.440-448
    • /
    • 2017
  • This study was conducted to establish the shelf life of $1^{++}$ grade Hanwoo beef by evaluating the changes in meat quality and storage stability under distribution conditions similar to those during export to Hong Kong and China. Four muscles of the loin, striploin, tenderloin, and top round muscles were obtained from 10 animals of $1^{++}$ grade Hanwoo steers. The distribution conditions were 0, 7, or 14 d of aging at $2^{\circ}C$ and continuous storage at $-18^{\circ}C$ for 0, 3, 6, or 9 mon. The lightness (CIE $L^*$) values decreased as the duration of freezer storage increased (p<0.05). The water-holding capacity of 4 muscles increased as the aging time increased when they were frozen for 3 mon (p<0.05). The cooking loss values of the four muscles were significantly increased as the duration of freezer storage increased (p<0.05). The Warner-Bratzler shear force values were significantly decreased in the loin, striploin, and top round muscles as the aging time increased (p<0.05). The changes in volatile basic nitrogen (16.67-18.49 mg%) and thiobarbituric reactive substance values (0.75-0.82 mg MA/kg meat) were significantly increased when the meat was frozen for 9 mon after 14 d of aging. On the basis of these observations, the shelf life of $1^{++}$ grade Hanwoo beef during distribution should be limited to less than 9 mon of freezer storage at $-18^{\circ}C$ after 14 d of aging at $2^{\circ}C$.

Evaluation of Hydrogeologic Seal Capacity of Mudstone in the Yeongil Group, Pohang Basin, Korea: Focusing on Mercury Intrusion Capillary Pressure Analysis (포항분지 영일층군 이암층의 수리지질학적 차폐능 평가: 수은 모세관 압입 시험의 결과 분석을 중심으로)

  • Kim, Seon-Ok;Wang, Sookyun;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • Geological CO2 sequestration is a global warming response technology to limit atmospheric emissions by injecting CO2 captured on a large scale into deep geological formations. The presented results concern mineralogical and hydrogeological investigations (FE-SEM, XRD, XRF, and MICP) of mudstone samples from drilling cores of the Pohang basin, which is the research area for the first demonstration-scale CO2 storage project in Korea. They aim to identify the mineral properties of the mudstone constituting the caprock and to quantitatively evaluate the hydrogeologic sealing capacity that directly affects the stability and reliability of geological CO2 storage. Mineralogical analysis showed that the mudstone samples are mainly composed of quartz, K-feldspar, plagioclase and a small amount of pyrite, calcite, clay minerals, etc. Mercury intrusion capillary pressure analysis also showed that the samples generally had uniform particle configurations and pore distribution and there was no distinct correlation between the estimated porosity and air permeability. The allowable CO2 column heights based on the estimated pore-entry pressures and breakthrough pressures were found to be significantly higher than the thickness of the targeting CO2 injection layer. These results showed that the mudstone layers in the Yeongil group, Pohang basin, Korea have sufficient sealing capacity to suppress the leakage of CO2 injected during the demonstration-scale CO2 storage project. It should be noticed, however, that the applicability of results and analyses in this study is limited by the lack of available samples. For rigorous assessment of the sealing efficiency for geological CO2 storage operations, significant efforts on collection and multi-aspect evaluation for core samples over entire caprock formations should be accompanied.

Mechanical Properties of a High-temperature Superconductor Bearing Rotor in a 10 kWh Class Superconductor Flywheel Energy Storage System (10 kWh급 초전도 베어링 회전자의 기계적 특성 평가)

  • Park, B.J.;Jung, S.Y.;Kim, C.H.;Han, S.C.;Park, B.C.;Han, S.J.;Doo, S.G.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • Recently, superconductor flywheel energy storage systems (SFESs) have been developed for application to a regenerative power of train, a power quality improvement, the storage of distributed power sources such as solar and wind power, and a load leveling. As the high temperature superconductor (HTS) bearings offer dynamic stability without the use of active control, accurate analysis of the HTS bearing is very important for application to SFESs. Mechanical property of a HTS bearing is the main index for evaluating the capacity of an HTS bearing and is determined by the interaction between the HTS bulks and the permanent magnet (PM) rotor. HTS bearing rotor consists of PM and iron collector and the proper dimension design of them is very important to determine a supporting characteristics. In this study, we have optimized a rotor magnet array, which depends on the limited bulk size and performed various dimension layouts for thickness of the pole pitch and iron collector. HTS bearing rotor was installed into a single axis universal test machine for a stiffness test. A hydraulic pump was used to control the amplitude and frequency of the rotor vibration. As a result, the stiffness result showed a large difference more than 30 % according to the thickness of permanent magnet and iron collector. This is closely related to the bulk stiffness controlled by flux pining area, which is limited by the total bulk dimension. Finally, the optimized HTS bearing rotor was installed into a flywheel system for a dynamic stability test. We discussed the dynamic properties of the superconductor bearing rotor and these results can be used for the optimal design of HTS bearings of the 10kWh SFESs.

Cryptanalysis of an 'Efficient-Strong Authentiction Protocol (E-SAP) for Healthcare Applications Using Wireless Medical Sensor Networks'

  • Khan, Muhammad Khurram;Kumari, Saru;Singh, Pitam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.967-979
    • /
    • 2013
  • Now a day, Wireless Sensor Networks (WSNs) are being widely used in different areas one of which is healthcare services. A wireless medical sensor network senses patient's vital physiological signs through medical sensor-nodes deployed on patient's body area; and transmits these signals to devices of registered medical professionals. These sensor-nodes have low computational power and limited storage capacity. Moreover, the wireless nature of technology attracts malicious minds. Thus, proper user authentication is a prime concern before granting access to patient's sensitive and private data. Recently, P. Kumar et al. claimed to propose a strong authentication protocol for healthcare using Wireless Medical Sensor Networks (WMSN). However, we find that P. Kumar et al.'s scheme is flawed with a number of security pitfalls. Information stored inside smart card, if extracted, is enough to deceive a valid user. Adversary can not only access patient's physiological data on behalf of a valid user without knowing actual password, can also send fake/irrelevant information about patient by playing role of medical sensor-node. Besides, adversary can guess a user's password and is able to compute the session key shared between user and medical sensor-nodes. Thus, the scheme looses message confidentiality. Additionally, the scheme fails to resist insider attack and lacks user anonymity.