• Title/Summary/Keyword: Limit state analysis

Search Result 648, Processing Time 0.027 seconds

Effect of Parameters in Evaporative Removal Process by Absorption of a CW Laser (연속 레이저 흡수에 의한 증발제거 과정의 관련 인자 영향 고찰)

  • 김진윤;송태호
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.67-76
    • /
    • 1995
  • Explosive evaporative removal process of biological tissue by absorption of a CW laser has been simulated by using gelatin and a multimode Nd: YAG laser. Because the point of maximun temperature of laser-irradiated gelatin exists below the surface due to surface cooling, evaporation at the boiling temperature is made explosively from below the surface. The important parameters of this process are the conduction loss to laser power absorption (defined as the conduction-to-laser power parameter, Nk), the convection heat transfer at the surface to conduction loss (defined as Bi), dimensionless extinction coefficient (defined as BrJ, and dimensionless irradiation time (defined as Fo). Dependence of Fo on Nk and Bi has been observed by experiment, and the results have been compared with the numerical results obtained by solving a 2-dimensional conduction equation. Fo and explosion depth (from the surface to the point of maximun temperature) are increased when Nk and Bi are increased. To find out the minimum laser power for explosive evaporative removal process, steady state analysis has been also made. The limit of Nk to induce evaporative removal, which is proportional to the inverse of the laser power, has been obtained.

  • PDF

Non-linear vibration and stability analysis of an axially moving rotor in sub-critical transporting speed range

  • Ghayesh, Mergen H.;Ghazavi, Mohammad R.;Khadem, Siamak E.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.507-523
    • /
    • 2010
  • Parametric and forced non-linear vibrations of an axially moving rotor both in non-resonance and near-resonance cases have been investigated analytically in this paper. The axial speed is assumed to involve a mean value along with small harmonic fluctuations. Hamilton's principle is employed for this gyroscopic system to derive three coupled non-linear equations of motion. Longitudinal inertia is neglected under the quasi-static stretch assumption and two integro-partial-differential equations are obtained. With introducing a complex variable, the equations of motion is presented in the form of a single, complex equation. The method of multiple scales is applied directly to the resulting equation and the approximate closed-form solution is obtained. Stability boundaries for the steady-state response are formulated and the frequency-response curves are drawn. A number of case studies are considered and the numerical simulations are presented to highlight the effects of system parameters on the linear and nonlinear natural frequencies, mode shapes, limit cycles and the frequency-response curves of the system.

The Analysis of Dynamic Characteristics and Modeling of Brushless DC Motor (Brushless DC 전동기의 모델링과 동특성 해석)

  • 전내석;박정환;조성훈;이성근;김윤식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.7
    • /
    • pp.1314-1320
    • /
    • 2001
  • DC motors have widely been used in the field of variable-speed driving system since it is easy to control flux and torque of the motors precisely but it is hard to check and maintain those periodically. In addition, there are difficulties in high power and high speed running due to rectifying limit of commutator, and are a lot of restrictions in installation. Therefore, speed control in BLDC(Brushless DC) motors have seriously been studied for a long while. In this paper, a mathematical model of BLDC motor driven by PWM inverter is developed. Dynamics and steady-state characteristics of BLDC motor are simulated and analyzed with a series of experiments for the parameter estimation : torque, speed, phase voltage and current.

  • PDF

The Bucking Strength and the Application of design of Design Formula of High Strength H-Shaped Section Steel Members (고강도 H형강 부재의 좌굴내력과 설계식에의 적용에 관한 연구)

  • Kim, Jin Kyong;Kim, Hee Dong;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.123-131
    • /
    • 2001
  • The objective of this study is to investigate the criteria of the width-to-thickness ratio and to evaluate the buckling strength of high strength steel beam-columns and to compare their buckling strength with design codes, which are the Limit State Design code and the Allowable Stress Desogn code(drift). SM520TMC and SM570Q class steels are used for high strength steels. The coupon test and the stub column test were carried out to investigate the properties of high strength steels and the stress-strain curves of stub columns. The buckling strength of high strength steel beam-columns are assessed by numerical analysis used axial force, moment and curvature relationships.

  • PDF

Ultimate Strength Based Reliability of Corroded Ship Hulls (부식을 고려한 선각거더의 최종강도 신뢰성)

  • Paik, J.K.;Yang, S.H.;Kim, S.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.96-110
    • /
    • 1996
  • Aging ships can suffer structural damage due to corrosion, fatigue crack etc., and possibility of catastrophic failure of seriously damaged ships is very high. To reduce the risk of loss of ships due to hull collapse, it is essential to evaluate ultimate hull strength of aging ships taking into account various uncertainties associated with structural damages. In this paper, ultimate strength-based reliability analysis of ship structures considering wear of structural members due to corrosion is described. A corrosion rate estimate model for structural members is introduced. An ultimate limit state function of a ship hull is formulated taking into account corrosion effects. The model is applied to an existing oil tanker, and reliability index associated with hull collapse is calculated by using the second-order reliability method (SORM). Discussions on structure safety of corroded ships are made.

  • PDF

A Study on the tire structure-borne sound (타이어 구조 진동음에 관한 연구)

  • Chi, Chang-Heon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.80-91
    • /
    • 1995
  • A theoretical models has been prepared which describes the noise generated by tire/road interaction for the tire structure-borne sound analysis. The model begin with a set of thin shell equations describing the motion of the belt of a radial ply tire, as drived by Bohm('mechanisms of the belted tire', Igeniur-Archiv, XXXV, 1966). Structural quantities required for these equations are derived from material properties of the tire. The rolling shape of a tire is computed from the steady-state limit of these equations. Vibrational response of the tire is treated by the full dependent shell equations. The force input at the tire/road interface is calculated on the basis of tread geometry and distribution of contact patch pressure. Radiation of noise is calculated by a simpson integral. Using the programs, the effect on noise of various tire design variations is computed and discussed. Trends which lead to quiet tire design are identified.

  • PDF

Short-circuit Analysis of Solenoid and Pancake Type Bifilar Winding Magnets using BSCCO tape

  • Park Dong Keun;Ahn Min Cheol;Yang Seong Eun;Yoon Il Gu;Kim Young Jae;Ko Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.28-31
    • /
    • 2005
  • To verify the feasibility of bifilar winding type superconducting fault current limiter (SFCL) using BSCCO tape, two types of magnets were fabricated and tested by short-circuit in this research. Even if the FCL using high Tc superconducting (HTS) tape has zero resistance in normal state, it needs to be wound as a bifilar winding for zero inductance. Solenoid type and pancake type bifilar winding magnets are designed and fabricated with the same length of BSCCO tape. The test system consists of AC power supply, transformer, fault switch, load and bifilar winding magnet. The applied AC voltages during fault duration, 0.1s, were from 0.5V to 20V. The test results without bifilar winding magnet were compared with those with each type magnets. The test results include voltage against magnet, transport current and generated resistance curve. Thermal stability, the recovery time, was studied from the results of two type magnets. The pancake type was the most effective to limit fault current but the solenoid type was thermally the most stable. From this research, short-circuit characteristics of the two types were obtained.

Reliability Analysis of GFRP Laminated Composite Cylindrical Shells (GFRP적층복합재료관의 신뢰성 해석)

  • 조효남;이승재
    • Computational Structural Engineering
    • /
    • v.6 no.1
    • /
    • pp.117-125
    • /
    • 1993
  • In general, the strength and stiffness of laminated composite cylindrical shells are very sensitive to the variation of slenderness parameters, some coupling-stiffness parameters, lamination angles, stacking sequence and number of layers. In this paper, the effects of these factors on the strength and buckling reliabilities of GFRP laminated cylindrical shells are investigated based on the proposed strength and buckling limit state models. As these factors have various and complicated effects on the strength and buckling reliabilities of GFRP laminated cylindrical shells, the results should be incorporated into the design formula such that optimum design technique and design code which provide uniform consistent reliability for balanced design in practice

  • PDF

Improvement Suggestion for Emergency Response Plans and Manuals (재난대응계획 및 매뉴얼 등의 발전방안)

  • Lee, Yong Jae;We, Kum Sook;Lee, Young Jai
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • Recently, scale and complexity of disaster are increasing by natural social factor, and there is limit for emergency response by single agency thereby. Therefore, when multi-agency conduct a response for disaster together at the scene, they need preparation for joint response in the advance for systematic mutual cooperation. Preparedness consist of various factors such as planning, securing of Organizations and resource, continuous education and training. This paper focus on emergency response plan and examine the existing state and problem of various plans and manuals. Also submit development way for establishing emergency response plan that had effectiveness through the foreign case analysis.

A study on the calculation of forced torsional vibration with damping for the marine diesel engine shafting by the mechanical impedance method (기계적 임피던스법에 의한 박용 디젤기관 추진축계의 강제감쇠 비틀림 진동의 계산에 관한 연구)

  • 김정열;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.307-316
    • /
    • 1985
  • Nowadays, the natural frequencies and their relative amplitudes of torsional vibration for the marine diesel engine shafting are usually calculated by the Holzer method and also its resonant amplitudes are estimated by the energy method, that is, by equating the exciting energy to the damping one. Therefore, the forced vibration amplitudes out of the resonant points can not be calculated by the above-mentioned method. And so, the reasonable barred-ranges of torsional vibration can not be set and also the flank of resonant point which locates near the calculation limit can not be estimated. For such problems, the equation of forced vibration with damping must be solved directly and these results can be utilized to derive the synthesized torsional vibration of the marine diesel engine propulsion shafting. In this study, the equation of forced vibration with damping for the marine diesel engine propulsion shafting is derived and its steady-state vibration is calculated by the mechanical impedance method. For numerical calculation of the actual propulsion shafting a computer program is developed. In order to prove the reliability of this program, an actual ship's propulsion shafting whose torsional vibration was measured is analyzed and the calculated propulsion shafting whose torsional vibration was measured is analyzed and the calculated results are compared with the measured ones. And also, they are compared with the calculated results which were obtained by the modal analysis.

  • PDF