• Title/Summary/Keyword: Limit of stability

Search Result 1,066, Processing Time 0.021 seconds

Evaluation of Hydrogeologic Seal Capacity of Mudstone in the Yeongil Group, Pohang Basin, Korea: Focusing on Mercury Intrusion Capillary Pressure Analysis (포항분지 영일층군 이암층의 수리지질학적 차폐능 평가: 수은 모세관 압입 시험의 결과 분석을 중심으로)

  • Kim, Seon-Ok;Wang, Sookyun;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • Geological CO2 sequestration is a global warming response technology to limit atmospheric emissions by injecting CO2 captured on a large scale into deep geological formations. The presented results concern mineralogical and hydrogeological investigations (FE-SEM, XRD, XRF, and MICP) of mudstone samples from drilling cores of the Pohang basin, which is the research area for the first demonstration-scale CO2 storage project in Korea. They aim to identify the mineral properties of the mudstone constituting the caprock and to quantitatively evaluate the hydrogeologic sealing capacity that directly affects the stability and reliability of geological CO2 storage. Mineralogical analysis showed that the mudstone samples are mainly composed of quartz, K-feldspar, plagioclase and a small amount of pyrite, calcite, clay minerals, etc. Mercury intrusion capillary pressure analysis also showed that the samples generally had uniform particle configurations and pore distribution and there was no distinct correlation between the estimated porosity and air permeability. The allowable CO2 column heights based on the estimated pore-entry pressures and breakthrough pressures were found to be significantly higher than the thickness of the targeting CO2 injection layer. These results showed that the mudstone layers in the Yeongil group, Pohang basin, Korea have sufficient sealing capacity to suppress the leakage of CO2 injected during the demonstration-scale CO2 storage project. It should be noticed, however, that the applicability of results and analyses in this study is limited by the lack of available samples. For rigorous assessment of the sealing efficiency for geological CO2 storage operations, significant efforts on collection and multi-aspect evaluation for core samples over entire caprock formations should be accompanied.

Improvement of turbid water prediction accuracy using sensor-based monitoring data in Imha Dam reservoir (센서 기반 모니터링 자료를 활용한 임하댐 저수지 탁수 예측 정확도 개선)

  • Kim, Jongmin;Lee, Sang Ung;Kwon, Siyoon;Chung, Se Woong;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.931-939
    • /
    • 2022
  • In Korea, about two-thirds of the precipitation is concentrated in the summer season, so the problem of turbidity in the summer flood season varies from year to year. Concentrated rainfall due to abnormal rainfall and extreme weather is on the rise. The inflow of turbidity caused a sudden increase in turbidity in the water, causing a problem of turbidity in the dam reservoir. In particular, in Korea, where rivers and dam reservoirs are used for most of the annual average water consumption, if turbidity problems are prolonged, social and environmental problems such as agriculture, industry, and aquatic ecosystems in downstream areas will occur. In order to cope with such turbidity prediction, research on turbidity modeling is being actively conducted. Flow rate, water temperature, and SS data are required to model turbid water. To this end, the national measurement network measures turbidity by measuring SS in rivers and dam reservoirs, but there is a limitation in that the data resolution is low due to insufficient facilities. However, there is an unmeasured period depending on each dam and weather conditions. As a sensor for measuring turbidity, there are Optical Backscatter Sensor (OBS) and YSI, and a sensor for measuring SS uses equipment such as Laser In-Situ Scattering and Transmissometry (LISST). However, in the case of such a high-tech sensor, there is a limit due to the stability of the equipment. Therefore, there is an unmeasured period through analysis based on the acquired flow rate, water temperature, SS, and turbidity data, so it is necessary to develop a relational expression to calculate the SS used for the input data. In this study, the AEM3D model used in the Water Resources Corporation SURIAN system was used to improve the accuracy of prediction of turbidity through the turbidity-SS relationship developed based on the measurement data near the dam outlet.

Simultaneous determination of 11-nor-Δ9-carboxy-tetrahydrocannabinol and 11-nor-Δ9-carboxy-tetrahydrocannabinol-glucuronide in urine samples by LC-MS/MS and its application to forensic science (LC-MS/MS를 이용한 소변 중 11-nor-Δ9-carboxy-tetrahydrocannabinol 및 11-nor-Δ9-carboxy-tetrahydrocannabinol-glucuronide의 동시 분석 및 법과학적 적용)

  • Park, Meejung;Kim, Sineun
    • Analytical Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.259-266
    • /
    • 2021
  • Cannabis (Marijuana) is one of the most widely used drugs in the world, and its distribution has been controlled in South Korea since 1976. Identification of 11-nor-Δ9-carboxy-tetrahydrocannabinol (THCCOOH) in urine can provide important proof of cannabis use, and it is considered scientific evidence in the forensic field. In this study, we describe a simultaneous quantitative method for identifying THCCOOH and THCCOOH-glucuronide in urine, using simple liquid-liquid extraction (LLE), and liquid chromatography-tandem mass spectrometry (LC-MS/MS). THCCOOH-D3 and THCCOOH-glucuronide-D3 were used as internal standards. Validation results of the matrix effect, as well as recovery, linearity, precision, accuracy, process efficiency, and stability were all satisfactory. No carryover, endogenous or exogenous interferences were observed. The limit of detection (LOD) of THCCOOH and THCCOOH-glucuronide were 0.3 and 0.2 ng/mL, respectively. The developed method was applied to 28 authentic human urine samples that tested positive in immunoassay screening and gas chromatography/mass spectrometry (GC/MS) tests. The ranges of concentrations of THCCOOH and THCCOOH-glucuronide in the samples were less than LOQ~266.90 ng/mL and 6.43~2133.03 ng/mL, respectively. The concentrations of THCCOOH-glucuronide were higher than those of THCCOOH in all samples. This method can be effectively and successfully applied for the confirmation of cannabinoid use in human urine samples in the forensic field.

Proper Growing Regions and Management Practices for Improving Production Stability in Direct-seeded Rice Cultivation (벼 무논직파 재배 안정성 확보를 위한 조건 및 재배적지 설정)

  • Hwang, Woon-Ha;Jeong, Jae-Hyeok;Lee, Hyen-Seok;Yang, Seo-Yeong;Lee, Chung-Keun;Lim, Yeon-Hwa;Cho, Seung-Hyun;Min, Hyun-Kyung;Kim, Sang-Kuk;Nam, Jin-Woo;Choi, Yeo-Seul;Jo, Youn-Sang;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.336-343
    • /
    • 2019
  • Wet direct-seeding (WDS) is an important method for improving the competitiveness of rice production in South Korea. We analyzed the optimum direct-seeding date to establish the rice standing rate in each area and selected suitable areas for WHS by considering the heading stage limit date for improving cultivation safety. As a result, the rice direct-seeding date to control weedy rice was around 5.15, 5.17-5.19, and after 5.20 in southern Youngnam, southern Honam, and the Middle Coast areas, respectively. However, the optimum seeding date for good standing rice was in late March in most areas. Analyzing by area, most of the southern plains and parts of the central inland plain are suitable for WHS. However, most parts of Gwangwon-do, and the northern parts of Chungbuk, Gyeongbuk, and Yeonghonam areas are not suitable for WHS, and should therefore avoid WHS.

Factor Analysis Affecting on Changes in Handysize Freight Index and Spot Trip Charterage (핸디사이즈 운임지수 및 스팟용선료 변화에 영향을 미치는 요인 분석)

  • Lee, Choong-Ho;Kim, Tae-Woo;Park, Keun-Sik
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.2
    • /
    • pp.73-89
    • /
    • 2021
  • The handysize bulk carriers are capable of transporting a variety of cargo that cannot be transported by mid-large size ship, and the spot chartering market is active, and it is a market that is independent of mid-large size market, and is more risky due to market conditions and charterage variability. In this study, Granger causality test, the Impulse Response Function(IRF) and Forecast Error Variance Decomposition(FEVD) were performed using monthly time series data. As a result of Granger causality test, coal price for coke making, Japan steel plate commodity price, hot rolled steel sheet price, fleet volume and bunker price have causality to Baltic Handysize Index(BHSI) and charterage. After confirming the appropriate lag and stability of the Vector Autoregressive model(VAR), IRF and FEVD were analyzed. As a result of IRF, the three variables of coal price for coke making, hot rolled steel sheet price and bunker price were found to have significant at both upper and lower limit of the confidence interval. Among them, the impulse of hot rolled steel sheet price was found to have the most significant effect. As a result of FEVD, the explanatory power that affects BHSI and charterage is the same in the order of hot rolled steel sheet price, coal price for coke making, bunker price, Japan steel plate price, and fleet volume. It was found that it gradually increased, affecting BHSI by 30% and charterage by 26%. In order to differentiate from previous studies and to find out the effect of short term lag, analysis was performed using monthly price data of major cargoes for Handysize bulk carriers, and meaningful results were derived that can predict monthly market conditions. This study can be helpful in predicting the short term market conditions for shipping companies that operate Handysize bulk carriers and concerned parties in the handysize chartering market.

Behaviors of the High-profile Arch Soil-steel Structure During Construction (높은 아치형 지중강판 구조물의 시공 중 거동 분석)

  • 이종구;조성민;김경석;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.71-84
    • /
    • 2003
  • The metallic shell of soil-steel structures are so weak in bending moment that it should sustain the applied load by the interaction of the backfill soil around the structures. The shell can be subjected to excessive bending moment during side backfilling or under live-load when the soil cover is less than the minimum value. The current design code specifies the allowable deformation and Duncan(1979) and McGrath et al.(2001) suggested the strength analysis methods to limit the moments by the plastic capacity of the shell. However, the allowable deformation is an empirically determined value and the strength analysis methods are based on the results of FE analysis, hence the experimental verification is necessary. In this study, the full-scale tests were conducted on the high-profile arch to investigate its behaviors during backfilling and under static live-loads. Based on the measurements, the allowable deformation of the tested structure could be estimated to be 1.45% of rise, which is smaller than the specified allowable deformation. The comparison between the measurements and the results of two strength analyses indicate that Duncan underestimates the earth-load moment and overestimates the live-load moment, while McGrath et al. predicts both values close to the actual values. However, as the predicted factors of safeties using two methods coincide with the actual factor of safety, it can be concluded that both methods can predict the structural stability under live-loads adequately when the cover is less than the minimum.