• 제목/요약/키워드: Limit displacement

검색결과 357건 처리시간 0.03초

Intensity measure-based probabilistic seismic evaluation and vulnerability assessment of ageing bridges

  • Yazdani, Mahdi;Jahangiri, Vahid
    • Earthquakes and Structures
    • /
    • 제19권5호
    • /
    • pp.379-393
    • /
    • 2020
  • The purpose of this study is to first evaluate the seismic behavior of ageing arch bridges by using the Intensity Measure - based demand and DCFD format, which is referred to as the fragility-hazard format. Then, an investigation is performed for their seismic vulnerability. Analytical models are created for bridges concerning different features and these models are subjected to Incremental Dynamic Analysis (IDA) analysis using a set of 22 earthquake records. The hazard curve and results of IDA analysis are employed to evaluate the return period of exceeding the limit states in the IM-based probabilistic performance-based context. Subsequently, the fragility-hazard format is used to assess factored demand, factored capacity, and the ratio of the factored demand to the factored capacity of the models with respect to different performance objectives. Finally, the vulnerability curves are obtained for the investigated bridges in terms of the loss ratio. The results revealed that decreasing the span length of the unreinforced arch bridges leads to the increase in the return period of exceeding various limit states and factored capacity and decrease in the displacement demand, the probability of failure, the factored demand, as well as the factored demand to factored capacity ratios, loss ratio, and seismic vulnerability. Finally, it is derived that the probability of the need for rehabilitation increases by an increase in the span length of the models.

GROUND TREATMENT CASE HISTORY OFR SOFT CLAY LAYER AND EVALUATION OF ITS IMPROVEMENT (연약지반처리와 개량효과 평가사례)

  • Lee, Yeong-Nam;Lee, Hyeong-Ju;Sim, Dong-Hyeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 1992년도 가을학술발표회 논문집
    • /
    • pp.113-120
    • /
    • 1992
  • The construction of container terminal at Brani, Singapore required the improvement of soft clay layer having the thickness of about 6.5m, average moisture content of 79.4%, liquid limit of 90.4%, plastic limit of 21.8%, field vane strength of 10 to 25 KPa, pre-consolidation pressure of 225 to 60 KPa and compression index of 0.4 to 1.0. For the improvement of this layer, Colbon drains of 1.3m spacing in triangular pattern were installed to the bottom of the layer and surcharge of more than 11.25m high sand fill was later applied to the treated area. The settlement and lateral displacement of the ground were measured and the speed of surcharge filling was controlled, based on these readings. The removal of surcharge was determinied using the estimated time for the 90% degree of consolidation under the design pressure of 180KPa. The field and laboratory test results show that the soft clay layer has been improved substantially in its strength and consolidation characteristics: increase in strength of about 50KPa and pre-consolidation pressure and decrease in void ratio and compression index.

  • PDF

Rock Slope Stability Analysis in Boeun Region Considering Properties of Discontinuities (불연속면의 특성은 고려한 보은지역 암반사면 안정성해석)

  • 이지수;박혁진;민경덕;구호본
    • Economic and Environmental Geology
    • /
    • 제34권6호
    • /
    • pp.601-615
    • /
    • 2001
  • The study area. Boeun-eup Boeun-kun, belongs to Ogchon metamorphic belt which is highly metamorphosed and consisted of complex geologic formations. Even though the geological structures and formations are complex and metamorphosed, the geological investigation and consideration are not enough and consequently the plane failure is occurred in the rock slope which was under construction on 1 : 0.5 gradient. This area is assessed as unstable and additional failure is possible by the discontinuity with same direction of failure surface. Therefore, the authors evaluate the slope stability using various analysis methods such as SMR, stereographic projection method, and the limit equilibrium analysis. In order to analyze stress redistribution and nonlinear displacement behavior caused by stress release, the authors conduct numerical analysis with UDEC and then the behavior of rock mass is analyzed after reinforcements are applied.

  • PDF

PROBABILISTIC SEISMIC ASSESSMENT OF BASE-ISOLATED NPPS SUBJECTED TO STRONG GROUND MOTIONS OF TOHOKU EARTHQUAKE

  • Ali, Ahmer;Hayah, Nadin Abu;Kim, Dookie;Cho, Ung Gook
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.699-706
    • /
    • 2014
  • The probabilistic seismic performance of a standard Korean nuclear power plant (NPP) with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA) of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA) as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

CFD-FSI simulation of vortex-induced vibrations of a circular cylinder with low mass-damping

  • Borna, Amir;Habashi, Wagdi G.;McClure, Ghyslaine;Nadarajah, Siva K.
    • Wind and Structures
    • /
    • 제16권5호
    • /
    • pp.411-431
    • /
    • 2013
  • A computational study of vortex-induced transverse vibrations of a cylinder with low mass-damping is presented. An Arbitrary Lagrangian-Eulerian (ALE) formulation of the Unsteady Reynolds-Averaged Navier-Stokes equations (URANS), along with the Spalart-Allmaras (SA) one-equation turbulence model, are coupled conservatively with rigid body motion equations of the cylinder mounted on elastic supports in order to study the amplitude and frequency response of a freely vibrating cylinder, its flow-induced motion, Vortex Street, near-wake flow structure, and unsteady loading in a moderate range of Reynolds numbers. The time accurate response of the cylinder from rest to its limit cycle is studied to explore the effects of Reynolds number on the start of large displacements, motion amplitude, and frequency. The computational results are compared with published physical experiments and numerical studies. The maximum amplitudes of displacements computed for various Reynolds numbers are smaller than the experimental values; however, the overall agreement of the results is quite satisfactory, and the upper branch of the limit-cycle displacement amplitude vs. reduced velocity response is captured, a feature that was missed by other studies. Vortex shedding modes, lock-in phenomena, frequency response, and phase angles are also in agreement with experiments.

A Study on the Application Method of Steinberg Fatigue Limit Equation for Electronic Part Life Assessment of Fighter Aircraft Radar (전투기 레이다용 전자부품 수명평가를 위한 Steinberg 피로한계식 적용방안 연구)

  • Kim, Deokjoo;Hah, Seung Ryong;Kang, Minsung;Heo, Jaehun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • 제23권4호
    • /
    • pp.319-327
    • /
    • 2020
  • In this study a methodology to evaluate fatigue life of the electronic parts for the fighter radar unit under random vibration loading is presented. To do this, one parameter for the 3-σ RMS quation of Steinberg fatigue model is modified to come up with a printed circuit board(PCB) with multiple electronic parts, while fundamental frequency and dynamic deflection of the PCB are calculated from a MATLAB based finite element computer code. For the RIFA structure selected in this study, the 3-σ RMS fatigue limit displacement is reduced to 0.741 times as much as the Steinberg model. This investigation allows to assess the life of multiple electronic parts mounted on the PCB with reinforced metal cover/body showing non-sinusoidal deflection patterns.

Experimental and numerical studies on seismic performance of hollow RC bridge columns

  • Han, Qiang;Zhou, Yulong;Du, Xiuli;Huang, Chao;Lee, George C.
    • Earthquakes and Structures
    • /
    • 제7권3호
    • /
    • pp.251-269
    • /
    • 2014
  • To investigate the seismic performance and to obtain quantitative parameters for the requirement of performance-based bridge seismic design approach, 12 reinforced concrete (RC) hollow rectangular bridge column specimens were tested under constant axial load and cyclic bending. Parametric study is carried out on axial load ratio, aspect ratio, longitudinal reinforcement ratio and transverse reinforcement ratio. The damage states of these column specimens were related to engineering limit states to determine the quantitative criteria of performance-based bridge seismic design. The hysteretic behavior of bridge column specimens was simulated based on the fiber model in OpenSees program and the results of the force-displacement hysteretic curves were well agreed with the experimental results. The damage states of residual cracking, cover spalling, and core crushing could be well related to engineering limit states, such as longitudinal tensile strains of reinforcement or compressive strains of concrete, etc. using cumulative probability curves. The ductility coefficient varying from 3.71 to 8.29, and the equivalent viscous damping ratio varying from 0.19 to 0.31 could meet the requirements of seismic design.

A Reliability Analysis of a Guyed Tower (Guyed Tower의 신뢰성 해석)

  • Tae-B.,Ha;Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • 제24권2호
    • /
    • pp.29-35
    • /
    • 1987
  • As offshore activities move into deeper ocean, conventional fixed-base platforms drastically increase in size and cost, One of alternatives available is a guyed tower, in which environmental loads are supported by guylines instead of structural members. The guying system of the guyed tower is designed on one hand to be stiff enough to limit the structural displacement in normal operations, but on the other hand to be soft enough to permit large slow sways during the presence of design-level storms. This compliancy provides an efficient means of withstanding harsh environment so that the disproportionate increase in size of deep water platforms can be kept to a rational limit. Novel configurations contain always some degrees of potential risks mainly due to the lack of experience. The most critical hazard inherent to a guyed tower may be the pullout of anchor piles. Once it happens, the guyline fails to function and it may eventually lead to the total collapse of the system. It is the aim of this paper to discuss and quantify the anchor-pullout risk of a guyed tower. A stochastic analysis is made for evaluating the first-upcrossing probability of the tension acting on anchor piles over the uplift capacity. Nonlinearities involved in the mooring stiffness and hydrodynamics are taken into account by using time-domain analysis. A simplified two dimensional dynamic model is developed to exemplify the underlying concept. Real hurricane data in the Gulf of Mexico spanning over 70 years are incorporated in a numerical example of which result clearly indicates highly potential risk of anchor pullout.

  • PDF

The role of slenderness on the seismic behavior of ground-supported cylindrical silos

  • Demir, Aysegul Durmus;Livaoglu, Ramazan
    • Advances in concrete construction
    • /
    • 제7권2호
    • /
    • pp.65-74
    • /
    • 2019
  • This paper reports on the results of a parametric study, which examines the effects of varying aspect ratios on the dynamic response of cylindrical silos directly supported on the ground under earthquake loading. Previous research has shown that numerical models can provide considerably realistic simulations when it comes to the behavior of silos by using correct boundary conditions, appropriate element types and material models. To this end, a three dimensional numerical model, taking into account the bulk material-silo wall interaction, was produced by the ANSYS commercial program, which is in turn based on the finite element method. The results obtained from the numerical analysis are discussed comparatively in terms of dynamic material pressure, horizontal displacement, equivalent base shear force and equivalent bending moment responses for considered aspect ratios. The effects experienced because of the slenderness of the silo in regards to the seismic response were evaluated along with the effectiveness of the classification system proposed by Eurocode in evaluating the loads on the vertical walls. Results clearly show that slenderness directly affects the seismic response of such structures especially in terms of behavior and the magnitude of the responses. Furthermore the aspect ratio value of 2.0, given as a behavioral changing limit in the technical literature, can be used as a valid limit for seismic behavior.

DEA optimization for operating tunnel back analysis (운영 중 터널 역해석을 위한 차분진화 알고리즘 최적화)

  • An, Joon-Sang;Kim, Byung-Chan;Moon, Hyun-Koo;Song, Ki-Il;Su, Guo-Shao
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제18권2호
    • /
    • pp.183-193
    • /
    • 2016
  • Estimation of the stability of an operating tunnel through a back analysis is a difficult concept to analyze. Specially, when a relatively thick lining is constructed as in case of a subsea tunnel, there will be a limit to the use of displacement-based tunnel back analysis because the corresponding displacement is too small. In this study, DEA is adopted for tunnel back analysis and the feasibility of DEA for back analysis is evaluated. It is implemented in the finite difference code FLAC3D using its built-in FISH language. In addition, the stability of a tunnel lining will be evaluated from the development of displacement-based algorithm and its expanded algorithm with conformity of several parameters such as stress measurements.