• 제목/요약/키워드: Limit Load Method

검색결과 461건 처리시간 0.027초

Reliability analysis of piles based on proof vertical static load test

  • Dong, Xiaole;Tan, Xiaohui;Lin, Xin;Zhang, Xuejuan;Hou, Xiaoliang;Wu, Daoxiang
    • Geomechanics and Engineering
    • /
    • 제29권5호
    • /
    • pp.487-496
    • /
    • 2022
  • Most of the pile's vertical static load tests in construction sites are the proof load tests, which is difficult to accurately estimate the ultimate bearing capacity and analyze the reliability of piles. Therefore, a reliability analysis method based on the proof load-settlement (Q-s) data is proposed in this study. In this proposed method, a simple ultimate limit state function based on the hyperbolic model is established, where the random variables of reliability analysis include the model factor of the ultimate bearing capacity and the fitting parameters of the hyperbolic model. The model factor M = RuR / RuP is calculated based on the available destructive Q-s data, where the real value of the ultimate bearing capacity (RuR) is obtained by the complete destructive Q-s data; the predicted value of the ultimate bearing capacity (RuP) is obtained by the proof Q-s data, a part of the available destructive Q-s data, that before the predetermined load determined by the pile test report. The results demonstrate that the proposed method can easy and effectively perform the reliability analysis based on the proof Q-s data.

콘크리트 옹벽구조물의 한계상태설계법 적용성 평가 (The Evaluation Applying Limit State Method for the Concrete Retaining Wall Structures)

  • 양태선;정종기;서준희;백승철
    • 한국지반환경공학회 논문집
    • /
    • 제15권7호
    • /
    • pp.59-66
    • /
    • 2014
  • 국내에서는 외국현장에서 사용되고 있는 한계상태설계법을 도입하기 위하여 연구가 일부 진행 중이다. 국내외 한계상태 설계법에서는 말뚝기초, 얕은기초 등 비교적 데이터베이스를 구축하기 쉬운 분야로 설계기준이 마련되고 있으나 옹벽 등에 대하여 재하시험이 어려운 실정으로 옹벽의 한계상태설계법에 관한 연구는 미흡한 실정이다. 본 연구는 2008년도에 제정된 국내 도로옹벽 표준도를 기준으로 옹벽구조물의 한계상태설계법의 적용성 평가에 관한 연구이다. 옹벽의 활동과 전도에 대한 안전율을 LRFD 설계기준을 이용하여 범용 한계상태설계법 프로그램의 해석결과와 비교 검토하였다. 또한 해석결과의 비교를 위하여 테일러 급수를 이용한 간편 신뢰성 분석을 실시하였다. 옹벽단면의 LRFD 검토 결과 허용응력설계법에 비해 안전율이 낮게 나타났으며, 한계상태설계 도입을 통해 옹벽의 단면을 감소시켜 경제성을 확보할 수 있을 것으로 판단된다. 향후 신뢰성 확보를 위해 지반 데이터의 사전평가 연구가 필요하며, 그라운드 앵커와 같은 지보재가 적용되는 옹벽의 한계상태설계법 적용, 평가에 관한 연구도 필요하다.

고속철도 WIM 데이터에 대한 통계분석을 통한 철도교량 설계활하중 분석 (Analysis of Design Live Load of Railway Bridge Through Statistical Analysis of WIM Data for High-speed Rail)

  • 박수민;여인호;백인열
    • 한국전산구조공학회논문집
    • /
    • 제28권6호
    • /
    • pp.589-597
    • /
    • 2015
  • 이 논문에서는 고속철도교량 설계를 위한 활하중 모델을 통계 및 확률적 방법으로 검토하고, 하중조합의 하중계수가 주는 안전율을 분석하였다. 이 연구는 철도교량 설계기준에 대한 한계상태설계법 개발의 일환이며, 이를 위하여 경부고속철도를 운행하는 열차를 대상으로 약 한달 동안 실측하여 데이터를 수집하고 분석하였다. 이 데이터를 대상으로 교량의 설계수명에 맞도록 4가지 통계 방법들을 적용하여 설계하중을 추정하여 비교 검토하였다. 또한, 철도교량의 설계하중조합이 주는 안전율을 검토하기 위하여 신뢰도지수를 구하고 이를 분석하였다. 실측 데이터로부터 추정한 활하중효과에 대하여, 현행 고속철도 설계활하중인 표준열차하중의 0.75배를 적용한 설계활하중 효과의 크기가 최소 30~22% 더 크게 나왔다. 신뢰도분석을 통하여, 극한한계상태만을 기준으로 본다면, 추가적인 하중계수 감소의 가능성이 있음을 알 수 있다.

Axial compression ratio limit values for steel reinforced concrete (SRC) special shaped columns

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Xue, Jianyang
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.295-316
    • /
    • 2016
  • This paper presents the results of experimental investigation, numerical calculation and theoretical analysis on axial compression ratio limit values for steel reinforced concrete (SRC) special shaped columns. 17 specimens were firstly intensively carried out to investigate the hysteretic behavior of SRC special shaped columns subjected to a constant axial load and cyclic reversed loads. Two theories were used to calculate the limits of axial compression ratio for all the specimens, including the balanced failure theory and superposition theory. It was found that the results of balanced failure theory by numerical integration method cannot conform the reality of test results, while the calculation results by employing the superposition theory can agree well with the test results. On the basis of superposition theory, the design limit values of axial compression ratio under different seismic grades were proposed for SRC special shaped columns.

On the member reliability of wind force-resisting steel frames designed by EN and ASCE rules of load combinations

  • Kudzys, Antanas;Kudzys, Algirdas
    • Wind and Structures
    • /
    • 제12권5호
    • /
    • pp.425-439
    • /
    • 2009
  • The expediency of revising universal rules for the combination of gravity and lateral actions of wind force-resisting steel structures recommended by the Standards EN 1990 and ASCE/SEI 7-05 is discussed. Extreme wind forces, gravity actions and their combinations for the limit state design of structures are considered. The effect of statistical uncertainties of extreme wind pressure and steel yield strength on the structural safety of beam-column joints of wind force-resisting multistory steel frames designed by the partial factor design (PFD) and the load and resistance factor design (LRFD) methods is demonstrated. The limit state criterion and the performance process of steel frame joints are presented and considered. Their long-term survival probability analysis is based on the unsophisticated method of transformed conditional probabilities. A numerical example illustrates some discrepancies in international design standards and the necessity to revise the rule of universal combinations of loads in wind and structural engineering.

평면(平面) Frame의 최적소성설계(最適塑性設計) (Optimal Plastic Design of Planar Frames)

  • 임상전;황선희
    • 대한조선학회지
    • /
    • 제17권2호
    • /
    • pp.1-10
    • /
    • 1980
  • The optimal plastic design of framed structures has been treated as the minimum weight design while satisfying the limit equilibrium condition that the structure may not fail in any of the all possible collapse modes before the specified design ultimate load is reached. Conventional optimum frame designs assume that a continuous spectrum of member size is available. In fact, the vailable sections merely consist of a finite range of discrete member sizes. Optimum frame design using discrete sections has been performed by adopting the plastic collapse theory and using the Complex Method of Box. This study has presented an iterative approach to the optimal plastic design of plane structures that involves the performance of a series of minimum weight design where the limit equilibrium equation pertaining to the critical collapse mode is added to the constraint set for the next design. The critical collapse mode is found by the collapse load analysis that is formulated as a linear programming problem. This area of research is currently being studied. This study would be applied and extended to design the larger and more complex framed structures.

  • PDF

Theoretical study of UHPCC composite column behaviors under axial compression

  • Wu, Xiang-Guo;Zou, Ruofei;Zhao, Xinyu;Yu, Qun
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.931-951
    • /
    • 2015
  • To improve the durability and service life of reinforced concrete column such as bridge piers, an advanced composite column made of Ultra High Performance Cementitious Composites (UHPCC) permanent form is proposed. Based on elasticity plasticity theory, axial compression behavior of the composite column was studied theoretically. The first circumferential cracking load and ultimate limit loading capacity are derived for the composite column. Short composite column compression tests and numerical simulations using FEM method were carried out to justify the theoretical formula. The effects of UHPCC tube thickness on the axial compression behavior were studied. Using the established theoretical model and numerical simulation, the large dimension composite columns are calculated and analyzed with different UHPCC tube thickness. These studies may provide a reference for advanced composite column design and application.

Moment curvature method for fire safety design of steel beams

  • Yu, H.X.;Richard Liew, J.Y.
    • Steel and Composite Structures
    • /
    • 제4권3호
    • /
    • pp.227-246
    • /
    • 2004
  • This paper presents a moment-curvature method that accounts for the strength deterioration of steel at elevated temperature in estimating the response of steel beams exposed to fire. A modification to the EC4 method is proposed for a better estimation of the temperature distribution in the steel beam supporting a concrete slab. The accuracy of the proposed method is verified by comparing the results with established test results and the nonlinear finite element analysis results. The beam failure criterion based on a maximum strain of 0.02 is proposed to assess the limiting temperature as compared to the traditional criteria that rely on deflection limit or deflection rate. Extensive studies carried out on steel beams with various span lengths, load ratios, beam sizes and loading types show that the proposed failure criterion gives consistent results when compared to nonlinear finite element results.

Reliability analysis of steel cable-stayed bridges including soil-pile interaction

  • Cheng, Jin;Liu, Xiao-luan
    • Steel and Composite Structures
    • /
    • 제13권2호
    • /
    • pp.109-122
    • /
    • 2012
  • An efficient and accurate algorithm is proposed to evaluate the reliability of cable-stayed bridges accounting for soil-pile interaction. The proposed algorithm integrates the finite-element method and the response surface method. The finite-element method is used to model the cable-stayed bridge including soil-pile interaction. The reliability index is evaluated based on the response surface method. Uncertainties in the superstructure, the substructure and load parameters are incorporated in the proposed algorithm. A long span steel cable-stayed bridge with a main span length of 1088 m built in China is considered as an illustrative example. The reliability of the bridge is evaluated for the strength and serviceability performance functions. Results of the study show that when strength limit states for both girder and tower are considered, soil-pile interaction has significant effects on the reliability of steel cable-stayed bridges. Further, a detailed sensitivity study shows that the modulus of subgrade reaction is the most important soil-pile interaction-related parameter influencing the reliability of steel cable-stayed bridges.

2경간 연속교의 과재하중 해석방법에 관한 연구 (A Study on the Analysis of Overload of a Two-Span Continuous Bridige)

  • 한상철
    • 한국안전학회지
    • /
    • 제8권1호
    • /
    • pp.47-53
    • /
    • 1993
  • Residual Deformation Analysis(RDA) is a new method for ratings of the continuous bridges. The RDA makes it possible to expand the inelastic steel girder bridge design method set forth in the American Association of State Highway Officals'(AASHTO) Guide Specifications for Alternate Load Factor Design Procedures for Steel Beam Bridges Using Braced Compact Sections(1986) into an inelastic rating method. It is a method to assess the residual moments and deformations that are set up in a beam that has been loaded into the post-elastic range This method combines classical elastic conjugate beam theory with linear moment-rotation relationships for midspan inelastic positive moment. The limit state is inelastic serviceability limit. which is defined as the ratio of the span to midspan inelastic deflection(C=L/D).

  • PDF