• Title/Summary/Keyword: Likelihood Ratio

Search Result 722, Processing Time 0.026 seconds

A Study on the Volatility of Global Stock Markets using Markov Regime Switching model (마코브국면전환모형을 이용한 글로벌 주식시장의 변동성에 대한 연구)

  • Lee, Kyung-Hee;Kim, Kyung-Soo
    • Management & Information Systems Review
    • /
    • v.34 no.3
    • /
    • pp.17-39
    • /
    • 2015
  • This study examined the structural changes and volatility in the global stock markets using a Markov Regime Switching ARCH model developed by the Hamilton and Susmel (1994). Firstly, the US, Italy and Ireland showed that variance in the high volatility regime was more than five times that in the low volatility, while Korea, Russia, India, and Greece exhibited that variance in the high volatility regime was increased more than eight times that in the low. On average, a jump from regime 1 to regime 2 implied roughly three times increased in risk, while the risk during regime 3 was up to almost thirteen times than during regime 1 over the study period. And Korea, the US, India, Italy showed ARCH(1) and ARCH(2) effects, leverage and asymmetric effects. Secondly, 278 days were estimated in the persistence of low volatility regime, indicating that the mean transition probability between volatilities exhibited the highest long-term persistence in Korea. Thirdly, the coefficients appeared to be unstable structural changes and volatility for the stock markets in Chow tests during the Asian, Global and European financial crisis. In addition, 1-Step prediction error tests showed that stock markets were unstable during the Asian crisis of 1997-1998 except for Russia, and the Global crisis of 2007-2008 except for Korea and the European crisis of 2010-2011 except for Korea, the US, Russia and India. N-Step tests exhibited that most of stock markets were unstable during the Asian and Global crisis. There was little change in the Asian crisis in CUSUM tests, while stock markets were stable until the late 2000s except for some countries. Also there were stable and unstable stock markets mixed across countries in CUSUMSQ test during the crises. Fourthly, I confirmed a close relevance of the volatility between Korea and other countries in the stock markets through the likelihood ratio tests. Accordingly, I have identified the episode or events that generated the high volatility in the stock markets for the financial crisis, and for all seven stock markets the significant switch between the volatility regimes implied a considerable change in the market risk. It appeared that the high stock market volatility was related with business recession at the beginning in 1990s. By closely examining the history of political and economical events in the global countries, I found that the results of Lamoureux and Lastrapes (1990) were consistent with those of this paper, indicating there were the structural changes and volatility during the crises and specificly every high volatility regime in SWARCH-L(3,2) student t-model was accompanied by some important policy changes or financial crises in countries or other critical events in the international economy. The sophisticated nonlinear models are needed to further analysis.

  • PDF

Spatial effect on the diffusion of discount stores (대형할인점 확산에 대한 공간적 영향)

  • Joo, Young-Jin;Kim, Mi-Ae
    • Journal of Distribution Research
    • /
    • v.15 no.4
    • /
    • pp.61-85
    • /
    • 2010
  • Introduction: Diffusion is process by which an innovation is communicated through certain channel overtime among the members of a social system(Rogers 1983). Bass(1969) suggested the Bass model describing diffusion process. The Bass model assumes potential adopters of innovation are influenced by mass-media and word-of-mouth from communication with previous adopters. Various expansions of the Bass model have been conducted. Some of them proposed a third factor affecting diffusion. Others proposed multinational diffusion model and it stressed interactive effect on diffusion among several countries. We add a spatial factor in the Bass model as a third communication factor. Because of situation where we can not control the interaction between markets, we need to consider that diffusion within certain market can be influenced by diffusion in contiguous market. The process that certain type of retail extends is a result that particular market can be described by the retail life cycle. Diffusion of retail has pattern following three phases of spatial diffusion: adoption of innovation happens in near the diffusion center first, spreads to the vicinity of the diffusing center and then adoption of innovation is completed in peripheral areas in saturation stage. So we expect spatial effect to be important to describe diffusion of domestic discount store. We define a spatial diffusion model using multinational diffusion model and apply it to the diffusion of discount store. Modeling: In this paper, we define a spatial diffusion model and apply it to the diffusion of discount store. To define a spatial diffusion model, we expand learning model(Kumar and Krishnan 2002) and separate diffusion process in diffusion center(market A) from diffusion process in the vicinity of the diffusing center(market B). The proposed spatial diffusion model is shown in equation (1a) and (1b). Equation (1a) is the diffusion process in diffusion center and equation (1b) is one in the vicinity of the diffusing center. $$\array{{S_{i,t}=(p_i+q_i{\frac{Y_{i,t-1}}{m_i}})(m_i-Y_{i,t-1})\;i{\in}\{1,{\cdots},I\}\;(1a)}\\{S_{j,t}=(p_j+q_j{\frac{Y_{j,t-1}}{m_i}}+{\sum\limits_{i=1}^I}{\gamma}_{ij}{\frac{Y_{i,t-1}}{m_i}})(m_j-Y_{j,t-1})\;i{\in}\{1,{\cdots},I\},\;j{\in}\{I+1,{\cdots},I+J\}\;(1b)}}$$ We rise two research questions. (1) The proposed spatial diffusion model is more effective than the Bass model to describe the diffusion of discount stores. (2) The more similar retail environment of diffusing center with that of the vicinity of the contiguous market is, the larger spatial effect of diffusing center on diffusion of the vicinity of the contiguous market is. To examine above two questions, we adopt the Bass model to estimate diffusion of discount store first. Next spatial diffusion model where spatial factor is added to the Bass model is used to estimate it. Finally by comparing Bass model with spatial diffusion model, we try to find out which model describes diffusion of discount store better. In addition, we investigate the relationship between similarity of retail environment(conceptual distance) and spatial factor impact with correlation analysis. Result and Implication: We suggest spatial diffusion model to describe diffusion of discount stores. To examine the proposed spatial diffusion model, 347 domestic discount stores are used and we divide nation into 5 districts, Seoul-Gyeongin(SG), Busan-Gyeongnam(BG), Daegu-Gyeongbuk(DG), Gwan- gju-Jeonla(GJ), Daejeon-Chungcheong(DC), and the result is shown

    . In a result of the Bass model(I), the estimates of innovation coefficient(p) and imitation coefficient(q) are 0.017 and 0.323 respectively. While the estimate of market potential is 384. A result of the Bass model(II) for each district shows the estimates of innovation coefficient(p) in SG is 0.019 and the lowest among 5 areas. This is because SG is the diffusion center. The estimates of imitation coefficient(q) in BG is 0.353 and the highest. The imitation coefficient in the vicinity of the diffusing center such as BG is higher than that in the diffusing center because much information flows through various paths more as diffusion is progressing. A result of the Bass model(II) shows the estimates of innovation coefficient(p) in SG is 0.019 and the lowest among 5 areas. This is because SG is the diffusion center. The estimates of imitation coefficient(q) in BG is 0.353 and the highest. The imitation coefficient in the vicinity of the diffusing center such as BG is higher than that in the diffusing center because much information flows through various paths more as diffusion is progressing. In a result of spatial diffusion model(IV), we can notice the changes between coefficients of the bass model and those of the spatial diffusion model. Except for GJ, the estimates of innovation and imitation coefficients in Model IV are lower than those in Model II. The changes of innovation and imitation coefficients are reflected to spatial coefficient(${\gamma}$). From spatial coefficient(${\gamma}$) we can infer that when the diffusion in the vicinity of the diffusing center occurs, the diffusion is influenced by one in the diffusing center. The difference between the Bass model(II) and the spatial diffusion model(IV) is statistically significant with the ${\chi}^2$-distributed likelihood ratio statistic is 16.598(p=0.0023). Which implies that the spatial diffusion model is more effective than the Bass model to describe diffusion of discount stores. So the research question (1) is supported. In addition, we found that there are statistically significant relationship between similarity of retail environment and spatial effect by using correlation analysis. So the research question (2) is also supported.

  • PDF

  • (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.